www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Cauchyfolge
Cauchyfolge < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchyfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Do 24.07.2014
Autor: rollroll

Aufgabe
Sei (X,d) ein metrischer Raum und seien [mm] (x_n), (y_n) [/mm] zwei Folgen in X. Zeige: Ist [mm] (y_n) [/mm] eine Cauchyfolge und gibt es ein [mm] n_0 \in [/mm] IN und ein x [mm] \in [/mm] X mit [mm] e^nd(x,x_n) \le d(x,y_n) [/mm] für alle n [mm] \ge n_0, [/mm] so ist [mm] (x_n) [/mm] eine Cauchyfolge.

Also, wenn ich zeigen soll, dass [mm] (x_n) [/mm] Cauchyfolge ist, muss ja gelten:

[mm] \forall \epsilon [/mm] >0 [mm] \exists n_0 \in [/mm] IN mit [mm] d(x_n,x_l) [/mm] < [mm] \epsilon \forall [/mm] n,l [mm] \ge n_0. [/mm]

Für [mm] (y_n) [/mm] weiß man ja bereits dass dies gilt, also dass [mm] \forall \epsilon [/mm] >0 [mm] \exists n_0 \in [/mm] IN mit [mm] d(y_n,y_l) [/mm] < [mm] \epsilon \forall [/mm] n,l [mm] \ge n_0. [/mm]

Mir fehlt iwie die zündende Idee. Kann ich z.B. [mm] X_l [/mm] = [mm] y_l [/mm] =x setzen?

        
Bezug
Cauchyfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Do 24.07.2014
Autor: fred97


> Sei (X,d) ein metrischer Raum und seien [mm](x_n), (y_n)[/mm] zwei
> Folgen in X. Zeige: Ist [mm](y_n)[/mm] eine Cauchyfolge und gibt es
> ein [mm]n_0 \in[/mm] IN und ein x [mm]\in[/mm] X mit [mm]e^nd(x,x_n) \le d(x,y_n)[/mm]
> für alle n [mm]\ge n_0,[/mm] so ist [mm](x_n)[/mm] eine Cauchyfolge.
>  Also, wenn ich zeigen soll, dass [mm](x_n)[/mm] Cauchyfolge ist,
> muss ja gelten:
>  
> [mm]\forall \epsilon[/mm] >0 [mm]\exists n_0 \in[/mm] IN mit [mm]d(x_n,x_l)[/mm] <
> [mm]\epsilon \forall[/mm] n,l [mm]\ge n_0.[/mm]
>  
> Für [mm](y_n)[/mm] weiß man ja bereits dass dies gilt, also dass
> [mm]\forall \epsilon[/mm] >0 [mm]\exists n_0 \in[/mm] IN mit [mm]d(y_n,y_l)[/mm] <
> [mm]\epsilon \forall[/mm] n,l [mm]\ge n_0.[/mm]
>  
> Mir fehlt iwie die zündende Idee. Kann ich z.B. [mm]X_l[/mm] = [mm]y_l[/mm]
> =x setzen?


Steht da wirklich  [mm] $e^nd(x,x_n) \le d(x,y_n)$ [/mm]  mit der Eulerschen Zahl $e$ ?

Wenn ja, so zeige der Reihe nach:

1. [mm] |d(y_n,x)-d(y_m,x)| \le d(y_n,y_m) [/mm]  für alle n,m [mm] \in \IN [/mm]

2. die reelle Folge [mm] (d(x,y_n)) [/mm] ist konvergent, also beschränkt. Es ex. also ein c>0 mit [mm] d(x,y_n)\le [/mm] c für alle n.

Damit haben wir

  [mm] d(x,x_n) \le \bruch{c}{e^n} [/mm]  für [mm] n>n_0. [/mm]

FRED

Bezug
                
Bezug
Cauchyfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Do 24.07.2014
Autor: rollroll

Ja, das steht tatsächlich da. Warum ist das so verwunderlich?

Ist der 1. Schritt den du genannt hast nicht einfach die umgekehrte Dreiecksungleichung?

Bezug
                        
Bezug
Cauchyfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Do 24.07.2014
Autor: fred97


> Ja, das steht tatsächlich da. Warum ist das so
> verwunderlich?

Weil statt $e$ jede reelle Zahl >1 das gleiche leistet.

>  
> Ist der 1. Schritt den du genannt hast nicht einfach die
> umgekehrte Dreiecksungleichung?

Ja

FRED


Bezug
                                
Bezug
Cauchyfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Do 24.07.2014
Autor: rollroll

Zunächst mal: Wie sieht man dann überhaupt, dass man so vorgehen muss/sollte, wie du es vorschlägst? Also wie kommt man drauf?

Gut, 1. ist dann klar.
Wie zeige ich, dass [mm] (d(x,y_n)) [/mm] konvergiert? Hat dies damit zu tun, dass [mm] y_n [/mm] Cauchyfolge ist?

Bezug
                                        
Bezug
Cauchyfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Do 24.07.2014
Autor: fred97


> Zunächst mal: Wie sieht man dann überhaupt, dass man so
> vorgehen muss/sollte, wie du es vorschlägst? Also wie
> kommt man drauf?

Strategie:

Aus $ [mm] e^nd(x,x_n) \le d(x,y_n) [/mm] $  für [mm] n>n_0 [/mm] folgt

    [mm] d(x,x_n) \le \bruch{d(x,y_n)}{e^n} [/mm]  für alle [mm] n>n_0. [/mm]

Aus der umgekehrten Dreiecksungleichung

   $ [mm] |d(y_n,x)-d(y_m,x)| \le d(y_n,y_m) [/mm] $

folgt, dass [mm] (d(x,y_n)) [/mm] eine Cauchyfolge in [mm] \IR [/mm] ist. Also ist [mm] (d(x,y_n)) [/mm] konvergent und damit beschränkt.

>  
> Gut, 1. ist dann klar.
> Wie zeige ich, dass [mm](d(x,y_n))[/mm] konvergiert? Hat dies damit
> zu tun, dass [mm]y_n[/mm] Cauchyfolge ist?

Ja, siehe oben.

FRED


Bezug
                                                
Bezug
Cauchyfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 So 03.08.2014
Autor: rollroll

Ich muss nochmal kurz nachfragen,  warum folgt aus der dreiecksungleichung dass (d (x, [mm] y_n) [/mm] Cauchy Folge ist?

Bezug
                                                        
Bezug
Cauchyfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 So 03.08.2014
Autor: fred97


> Ich muss nochmal kurz nachfragen,  warum folgt aus der
> dreiecksungleichung dass (d (x, [mm]y_n)[/mm] Cauchy Folge ist?


Aus



   $ [mm] |d(y_n,x)-d(y_m,x)| \le d(y_n,y_m) [/mm] $

und  der Tatsache, dass  [mm] (y_n) [/mm] eine Cauchyfolge ist.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de