Cauchyfolge < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:18 Di 05.08.2014 | Autor: | Calculu |
Aufgabe | a) Sei (X,d) ein metrischer Raum und sei [mm] (x_{n}) [/mm] eine Cauchyfolge in X. Zeigen Sie: Gibt es eine Teilfolge [mm] (x_n_k) [/mm] von [mm] (x_n), [/mm] die gegen x [mm] \in [/mm] X konvergiert, so idt [mm] (x_n) [/mm] konvergent und es gilt [mm] \limes_{n\rightarrow\infty} x_n [/mm] = x.
b) Seien (X,d) und [mm] (Y,\partial) [/mm] metrische Räume und sei f: X [mm] \to [/mm] Y eine stetige Abbildung. Zeigen Sie: Für jede Teilmenge M [mm] \subseteq [/mm] X, für die [mm] \overline{M} [/mm] kompakt ist, gilt:
[mm] f(\overline{M}) [/mm] = [mm] \overline{f(M)} [/mm] |
Also zu der b) habe ich mir überlegt:
Ich nehme ein x [mm] \in \overline{M}. [/mm] Dann gibt es eine Folge [mm] x_n \in [/mm] M deren Grenzwert in [mm] \overline{M} [/mm] liegt. Da f stetig ist, gilt [mm] f(x_n) \to [/mm] f(x) [mm] \subset [/mm] f(M) [mm] \subset \overline{f(M)}. [/mm] Wenn ich nun noch zeigen kann, dass [mm] \overline{f(M)} \subset f(\overline{M}) [/mm] habe ich die Gleichheit gezeigt, aber gerade das fällt mich schwer.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:36 Di 05.08.2014 | Autor: | fred97 |
> a) Sei (X,d) ein metrischer Raum und sei [mm](x_{n})[/mm] eine
> Cauchyfolge in X. Zeigen Sie: Gibt es eine Teilfolge
> [mm](x_n_k)[/mm] von [mm](x_n),[/mm] die gegen x [mm]\in[/mm] X konvergiert, so idt
> [mm](x_n)[/mm] konvergent und es gilt [mm]\limes_{n\rightarrow\infty} x_n[/mm]
> = x.
>
> b) Seien (X,d) und [mm](Y,\partial)[/mm] metrische Räume und sei f:
> X [mm]\to[/mm] Y eine stetige Abbildung. Zeigen Sie: Für jede
> Teilmenge M [mm]\subseteq[/mm] X, für die [mm]\overline{M}[/mm] kompakt ist,
> gilt:
> [mm]f(\overline{M})[/mm] = [mm]\overline{f(M)}[/mm]
> Also zu der b) habe ich mir überlegt:
> Ich nehme ein x [mm]\in \overline{M}.[/mm] Dann gibt es eine Folge
> [mm]x_n \in[/mm] M deren Grenzwert in [mm]\overline{M}[/mm] liegt. Da f
> stetig ist, gilt [mm]f(x_n) \to[/mm] f(x) [mm]\subset[/mm] f(M) [mm]\subset \overline{f(M)}.[/mm]
> Wenn ich nun noch zeigen kann, dass [mm]\overline{f(M)} \subset f(\overline{M})[/mm]
> habe ich die Gleichheit gezeigt, aber gerade das fällt
> mich schwer.
Tja, man sollte schon alle Voraussetzungen verbraten !
[mm] \overline{M} [/mm] ist kompakt. Da f stetig ist, ist auch [mm] f(\overline{M}) [/mm] kompakt und damit auch abgeschlossen !
Hilft das ?
FRED
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:11 Di 05.08.2014 | Autor: | Calculu |
> > a) Sei (X,d) ein metrischer Raum und sei [mm](x_{n})[/mm] eine
> > Cauchyfolge in X. Zeigen Sie: Gibt es eine Teilfolge
> > [mm](x_n_k)[/mm] von [mm](x_n),[/mm] die gegen x [mm]\in[/mm] X konvergiert, so idt
> > [mm](x_n)[/mm] konvergent und es gilt [mm]\limes_{n\rightarrow\infty} x_n[/mm]
> > = x.
> >
> > b) Seien (X,d) und [mm](Y,\partial)[/mm] metrische Räume und sei f:
> > X [mm]\to[/mm] Y eine stetige Abbildung. Zeigen Sie: Für jede
> > Teilmenge M [mm]\subseteq[/mm] X, für die [mm]\overline{M}[/mm] kompakt ist,
> > gilt:
> > [mm]f(\overline{M})[/mm] = [mm]\overline{f(M)}[/mm]
> > Also zu der b) habe ich mir überlegt:
> > Ich nehme ein x [mm]\in \overline{M}.[/mm] Dann gibt es eine
> Folge
> > [mm]x_n \in[/mm] M deren Grenzwert in [mm]\overline{M}[/mm] liegt. Da f
> > stetig ist, gilt [mm]f(x_n) \to[/mm] f(x) [mm]\subset[/mm] f(M) [mm]\subset \overline{f(M)}.[/mm]
> > Wenn ich nun noch zeigen kann, dass [mm]\overline{f(M)} \subset f(\overline{M})[/mm]
> > habe ich die Gleichheit gezeigt, aber gerade das fällt
> > mich schwer.
>
>
> Tja, man sollte schon alle Voraussetzungen verbraten !
>
> [mm]\overline{M}[/mm] ist kompakt. Da f stetig ist, ist auch
> [mm]f(\overline{M})[/mm] kompakt und damit auch abgeschlossen !
>
> Hilft das ?
Hm, ich weiß nicht. Also wenn [mm] f(\overline{M}) [/mm] abgeschlossen ist, muss ja [mm] f(\overline{M}) [/mm] = [mm] \overline{f(M)} [/mm] sein. Aber wie kann ich das in meinen Beweis einbauen. Bzw, kann ich es so einbauen, dass ich direkt Gleichheit zeigen kann.
>
> FRED
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:52 Di 05.08.2014 | Autor: | fred97 |
> > > a) Sei (X,d) ein metrischer Raum und sei [mm](x_{n})[/mm] eine
> > > Cauchyfolge in X. Zeigen Sie: Gibt es eine Teilfolge
> > > [mm](x_n_k)[/mm] von [mm](x_n),[/mm] die gegen x [mm]\in[/mm] X konvergiert, so idt
> > > [mm](x_n)[/mm] konvergent und es gilt [mm]\limes_{n\rightarrow\infty} x_n[/mm]
> > > = x.
> > >
> > > b) Seien (X,d) und [mm](Y,\partial)[/mm] metrische Räume und sei f:
> > > X [mm]\to[/mm] Y eine stetige Abbildung. Zeigen Sie: Für jede
> > > Teilmenge M [mm]\subseteq[/mm] X, für die [mm]\overline{M}[/mm] kompakt ist,
> > > gilt:
> > > [mm]f(\overline{M})[/mm] = [mm]\overline{f(M)}[/mm]
> > > Also zu der b) habe ich mir überlegt:
> > > Ich nehme ein x [mm]\in \overline{M}.[/mm] Dann gibt es eine
> > Folge
> > > [mm]x_n \in[/mm] M deren Grenzwert in [mm]\overline{M}[/mm] liegt. Da f
> > > stetig ist, gilt [mm]f(x_n) \to[/mm] f(x) [mm]\subset[/mm] f(M) [mm]\subset \overline{f(M)}.[/mm]
> > > Wenn ich nun noch zeigen kann, dass [mm]\overline{f(M)} \subset f(\overline{M})[/mm]
> > > habe ich die Gleichheit gezeigt, aber gerade das fällt
> > > mich schwer.
> >
> >
> > Tja, man sollte schon alle Voraussetzungen verbraten !
> >
> > [mm]\overline{M}[/mm] ist kompakt. Da f stetig ist, ist auch
> > [mm]f(\overline{M})[/mm] kompakt und damit auch abgeschlossen !
> >
> > Hilft das ?
> Hm, ich weiß nicht. Also wenn [mm]f(\overline{M})[/mm]
> abgeschlossen ist, muss ja [mm]f(\overline{M})[/mm] =
> [mm]\overline{f(M)}[/mm] sein. Aber wie kann ich das in meinen
> Beweis einbauen. Bzw, kann ich es so einbauen, dass ich
> direkt Gleichheit zeigen kann.
Mann, ist das mühsam !
1. [mm] f(\overline{M}) [/mm] ist abgeschlossen.
2. $f(M) [mm] \subseteq f(\overline{M})$
[/mm]
Aus 2. folgt
[mm] $\overline{f(M)} \subseteq \overline{ f(\overline{M})}$
[/mm]
Mit 1. liefert dies
[mm] $\overline{f(M)} \subseteq \overline{ f(\overline{M})}=f(\overline{M})$
[/mm]
Dass [mm] f(\overline{M}) \subseteq \overline{f(M)} [/mm] ist hast Du oben schon selbst gezeigt.
FRED
> >
> > FRED
>
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:51 Di 05.08.2014 | Autor: | Marcel |
Hallo,
> a) Sei (X,d) ein metrischer Raum und sei [mm](x_{n})[/mm] eine
> Cauchyfolge in X. Zeigen Sie: Gibt es eine Teilfolge
> [mm](x_n_k)[/mm] von [mm](x_n),[/mm] die gegen x [mm]\in[/mm] X konvergiert, so idt
> [mm](x_n)[/mm] konvergent und es gilt [mm]\limes_{n\rightarrow\infty} x_n[/mm]
> = x.
Tipp: Ist [mm] $(x_{n_k})_k$ [/mm] konvergent gegen [mm] $x\,,$ [/mm] so gilt
[mm] $d(x_n,x) \le d(x_n,x_{n_k})+d(x_{n_k},x)\,.$
[/mm]
Bedenke nun, dass [mm] $(x_n)$ [/mm] Cauchy ist, um eine Aussage über [mm] $d(x_n,x_{n_k})$ [/mm] zu erzielen...
beachte dabei [mm] $n_k \ge k\,.$ [/mm] (Und dass [mm] $d(x_{x_k},x) \to [/mm] 0$ bei $k [mm] \to \infty\,,$ [/mm] ist klar).
Weiterer Hinweis: Führe einen Beweis mit der Epsilontechnik: Sei [mm] $\epsilon [/mm] > [mm] 0\,.$ [/mm] Dann gibt
es ein [mm] $k_0$ [/mm] mit [mm] $d(x_{n_k},x) [/mm] < [mm] \epsilon/2$ [/mm] für alle $k [mm] \ge k_0\,,$ [/mm] weil...?
Ferner: [mm] $(x_n)$ [/mm] ist Cauchy, also gibt es ein [mm] $n_0$ [/mm] mit
[mm] $\forall [/mm] n,m [mm] \ge n_0$ [/mm] gilt [mm] $d(x_{n},x_m) [/mm] < [mm] \epsilon/2\,.$
[/mm]
Sei [mm] $N_0:=\max\{n_0,\;k_0\}\,.$ [/mm] Für alle $n [mm] \ge N_0$ [/mm] folgt dann: (Sogar für alle,
aber insbesondere für ein) $k [mm] \ge N_0$ [/mm] ist
[mm] $d(x_n,x_{n_k}) [/mm] < ...,$ weil $n [mm] \ge n_0$ [/mm] und [mm] $n_k \ge [/mm] k [mm] \ge N_0 \ge n_0$
[/mm]
und wegen $k [mm] \ge N_0 \ge k_0$ [/mm] ist
[mm] $d(x_{n_k},x) [/mm] < [mm] ...\,,$
[/mm]
also
[mm] $d(x_n,x) [/mm] < ... + ...=...$
Gruß,
Marcel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:32 Di 05.08.2014 | Autor: | Calculu |
> Hallo,
>
> > a) Sei (X,d) ein metrischer Raum und sei [mm](x_{n})[/mm] eine
> > Cauchyfolge in X. Zeigen Sie: Gibt es eine Teilfolge
> > [mm](x_n_k)[/mm] von [mm](x_n),[/mm] die gegen x [mm]\in[/mm] X konvergiert, so idt
> > [mm](x_n)[/mm] konvergent und es gilt [mm]\limes_{n\rightarrow\infty} x_n[/mm]
> > = x.
>
> Tipp: Ist [mm](x_{n_k})_k[/mm] konvergent gegen [mm]x\,,[/mm] so gilt
>
> [mm]d(x_n,x) \le d(x_n,x_{n_k})+d(x_{n_k},x)\,.[/mm]
>
> Bedenke nun, dass [mm](x_n)[/mm] Cauchy ist, um eine Aussage über
> [mm]d(x_n,x_{n_k})[/mm] zu erzielen...
> beachte dabei [mm]n_k \ge k\,.[/mm] (Und dass [mm]d(x_{x_k},x) \to 0[/mm] bei
> [mm]k \to \infty\,,[/mm] ist klar).
Da [mm] x_{n} [/mm] cauchy ist, konvergiert [mm] x_{n_k} [/mm] gegen [mm] x_{n} [/mm] für k [mm] \to \infty. [/mm] Also steht da: [mm] d(x_{n},x) \le [/mm] 0, somit [mm] d(x_{n},x) [/mm] =0. Also konvergiert [mm] x_{n} [/mm] gegen x.
>
> Weiterer Hinweis: Führe einen Beweis mit der
> Epsilontechnik: Sei [mm]\epsilon > 0\,.[/mm] Dann gibt
> es ein [mm]k_0[/mm] mit [mm]d(x_{n_k},x) < \epsilon/2[/mm] für alle [mm]k \ge k_0\,,[/mm]
> weil...?
>
> Ferner: [mm](x_n)[/mm] ist Cauchy, also gibt es ein [mm]n_0[/mm] mit
>
> [mm]\forall n,m \ge n_0[/mm] gilt [mm]d(x_{n},x_m) < \epsilon/2\,.[/mm]
>
> Sei [mm]N_0:=\max\{n_0,\;k_0\}\,.[/mm] Für alle [mm]n \ge N_0[/mm] folgt
> dann: (Sogar für alle,
> aber insbesondere für ein) [mm]k \ge N_0[/mm] ist
>
> [mm]d(x_n,x_{n_k}) < ...,[/mm] weil [mm]n \ge n_0[/mm] und [mm]n_k \ge k \ge N_0 \ge n_0[/mm]
>
> und wegen [mm]k \ge N_0 \ge k_0[/mm] ist
>
> [mm]d(x_{n_k},x) < ...\,,[/mm]
>
> also
>
> [mm]d(x_n,x) < ... + ...=...[/mm]
>
> Gruß,
> Marcel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:37 Di 05.08.2014 | Autor: | fred97 |
> > Hallo,
> >
> > > a) Sei (X,d) ein metrischer Raum und sei [mm](x_{n})[/mm] eine
> > > Cauchyfolge in X. Zeigen Sie: Gibt es eine Teilfolge
> > > [mm](x_n_k)[/mm] von [mm](x_n),[/mm] die gegen x [mm]\in[/mm] X konvergiert, so idt
> > > [mm](x_n)[/mm] konvergent und es gilt [mm]\limes_{n\rightarrow\infty} x_n[/mm]
> > > = x.
> >
> > Tipp: Ist [mm](x_{n_k})_k[/mm] konvergent gegen [mm]x\,,[/mm] so gilt
> >
> > [mm]d(x_n,x) \le d(x_n,x_{n_k})+d(x_{n_k},x)\,.[/mm]
> >
> > Bedenke nun, dass [mm](x_n)[/mm] Cauchy ist, um eine Aussage über
> > [mm]d(x_n,x_{n_k})[/mm] zu erzielen...
> > beachte dabei [mm]n_k \ge k\,.[/mm] (Und dass [mm]d(x_{x_k},x) \to 0[/mm] bei
> > [mm]k \to \infty\,,[/mm] ist klar).
>
> Da [mm]x_{n}[/mm] cauchy ist, konvergiert [mm]x_{n_k}[/mm] gegen [mm]x_{n}[/mm] für k
> [mm]\to \infty.[/mm]
Das ist völliger Unsinn !
> Also steht da: [mm]d(x_{n},x) \le[/mm] 0,
Nein, das steht da nicht !
FRED
> somit
> [mm]d(x_{n},x)[/mm] =0. Also konvergiert [mm]x_{n}[/mm] gegen x.
> >
> > Weiterer Hinweis: Führe einen Beweis mit der
> > Epsilontechnik: Sei [mm]\epsilon > 0\,.[/mm] Dann gibt
> > es ein [mm]k_0[/mm] mit [mm]d(x_{n_k},x) < \epsilon/2[/mm] für alle [mm]k \ge k_0\,,[/mm]
> > weil...?
> >
> > Ferner: [mm](x_n)[/mm] ist Cauchy, also gibt es ein [mm]n_0[/mm] mit
> >
> > [mm]\forall n,m \ge n_0[/mm] gilt [mm]d(x_{n},x_m) < \epsilon/2\,.[/mm]
> >
> > Sei [mm]N_0:=\max\{n_0,\;k_0\}\,.[/mm] Für alle [mm]n \ge N_0[/mm] folgt
> > dann: (Sogar für alle,
> > aber insbesondere für ein) [mm]k \ge N_0[/mm] ist
> >
> > [mm]d(x_n,x_{n_k}) < ...,[/mm] weil [mm]n \ge n_0[/mm] und [mm]n_k \ge k \ge N_0 \ge n_0[/mm]
>
> >
> > und wegen [mm]k \ge N_0 \ge k_0[/mm] ist
> >
> > [mm]d(x_{n_k},x) < ...\,,[/mm]
> >
> > also
> >
> > [mm]d(x_n,x) < ... + ...=...[/mm]
> >
> > Gruß,
> > Marcel
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:47 Di 05.08.2014 | Autor: | Marcel |
Hallo,
> > Hallo,
> >
> > > a) Sei (X,d) ein metrischer Raum und sei [mm](x_{n})[/mm] eine
> > > Cauchyfolge in X. Zeigen Sie: Gibt es eine Teilfolge
> > > [mm](x_n_k)[/mm] von [mm](x_n),[/mm] die gegen x [mm]\in[/mm] X konvergiert, so idt
> > > [mm](x_n)[/mm] konvergent und es gilt [mm]\limes_{n\rightarrow\infty} x_n[/mm]
> > > = x.
> >
> > Tipp: Ist [mm](x_{n_k})_k[/mm] konvergent gegen [mm]x\,,[/mm] so gilt
> >
> > [mm]d(x_n,x) \le d(x_n,x_{n_k})+d(x_{n_k},x)\,.[/mm]
> >
> > Bedenke nun, dass [mm](x_n)[/mm] Cauchy ist, um eine Aussage über
> > [mm]d(x_n,x_{n_k})[/mm] zu erzielen...
> > beachte dabei [mm]n_k \ge k\,.[/mm] (Und dass [mm]d(x_{x_k},x) \to 0[/mm] bei
> > [mm]k \to \infty\,,[/mm] ist klar).
>
> Da [mm]x_{n}[/mm] cauchy ist, konvergiert [mm]x_{n_k}[/mm] gegen [mm]x_{n}[/mm] für k
> [mm]\to \infty.[/mm]
nein. Fred hat es schon gesagt. Und ich habe Dir ja nicht umsonst einen
weiteren Hinweis gegeben.
Ziel dabei ist übrigens:
[mm] $d(x_n,x) [/mm] < [mm] \epsilon$ [/mm] für alle $n [mm] \ge N_0$
[/mm]
einzusehen. Eigentlich musst Du nur noch nach Anleitung vorgehen und
die ... ergänzen.
> Also steht da: [mm]d(x_{n},x) \le[/mm] 0, somit
> [mm]d(x_{n},x)[/mm] =0. Also konvergiert [mm]x_{n}[/mm] gegen x.
Nein, wie gesagt: Lies' das folgende nochmal (am Besten in der Original-
Antwort).
Gruß,
Marcel
> > Weiterer Hinweis: Führe einen Beweis mit der
> > Epsilontechnik: Sei [mm]\epsilon > 0\,.[/mm] Dann gibt
> > es ein [mm]k_0[/mm] mit [mm]d(x_{n_k},x) < \epsilon/2[/mm] für alle [mm]k \ge k_0\,,[/mm]
> > weil...?
> >
> > Ferner: [mm](x_n)[/mm] ist Cauchy, also gibt es ein [mm]n_0[/mm] mit
> >
> > [mm]\forall n,m \ge n_0[/mm] gilt [mm]d(x_{n},x_m) < \epsilon/2\,.[/mm]
> >
> > Sei [mm]N_0:=\max\{n_0,\;k_0\}\,.[/mm] Für alle [mm]n \ge N_0[/mm] folgt
> > dann: (Sogar für alle,
> > aber insbesondere für ein) [mm]k \ge N_0[/mm] ist
> >
> > [mm]d(x_n,x_{n_k}) < ...,[/mm] weil [mm]n \ge n_0[/mm] und [mm]n_k \ge k \ge N_0 \ge n_0[/mm]
>
> >
> > und wegen [mm]k \ge N_0 \ge k_0[/mm] ist
> >
> > [mm]d(x_{n_k},x) < ...\,,[/mm]
> >
> > also
> >
> > [mm]d(x_n,x) < ... + ...=...[/mm]
> >
> > Gruß,
> > Marcel
>
|
|
|
|