www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Cauchyscher Integralsatz
Cauchyscher Integralsatz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchyscher Integralsatz: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 00:33 Mo 16.03.2009
Autor: Docy

Hallo alle zusammen,
ich habe ein kleines Verständnisproblem in Bezug auf den Cauchyschen Integralsatz. Und zwar geht es um ein Bsp.
Sei [mm] D=\IC\setminus\{0\} [/mm]
[mm] \gamma: [0,2\pi]\to [/mm] D, [mm] \gamma(t)=e^{it}. [/mm]
Sei [mm] f:D\to\IC, f(z)=\bruch{1}{z} [/mm]
Warum kann man hier nicht den Cauchyschen Integralsatz anwenden, d.h. warum gilt nicht [mm] \integral_{\gamma}^{}{f(z) dz}=0 [/mm] ??????????? Die Voraussetzung ist doch, dass f holomorph auf D sein muss. Und wenn [mm] D=\IC\setminus\{0\} [/mm] ist, dann ist f doch holomorph dadrauf, oder etwa nicht?????
Danke im Vorraus

Gruß Docy


        
Bezug
Cauchyscher Integralsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 05:44 Mo 16.03.2009
Autor: angela.h.b.


> Hallo alle zusammen,
>  ich habe ein kleines Verständnisproblem in Bezug auf den
> Cauchyschen Integralsatz. Und zwar geht es um ein Bsp.
>  Sei [mm]D=\IC\setminus\{0\}[/mm]
> [mm]\gamma: [0,2\pi]\to[/mm] D, [mm]\gamma(t)=e^{it}.[/mm]
>  Sei [mm]f:D\to\IC, f(z)=\bruch{1}{z}[/mm]
>  Warum kann man hier
> nicht den Cauchyschen Integralsatz anwenden, d.h. warum
> gilt nicht [mm]\integral_{\gamma}^{}{f(z) dz}=0[/mm] ??????????? Die
> Voraussetzung ist doch, dass f holomorph auf D sein muss.

Hallo,

das ist nur eine der Voraussetzungen.

Das Gebiet muß ein Sterngebiet sein, und das ist bei dem punktierten Kreis nicht der Fall.

Gruß v. Angela

> Und wenn [mm]D=\IC\setminus\{0\}[/mm] ist, dann ist f doch holomorph
> dadrauf, oder etwa nicht?????
>  Danke im Vorraus
>  
> Gruß Docy
>  


Bezug
                
Bezug
Cauchyscher Integralsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:24 Mo 16.03.2009
Autor: fred97

.
>  
> Das Gebiet muß ein Sterngebiet sein, und das ist bei dem
> punktierten Kreis nicht der Fall.
>  
> Gruß v. Angela


Das Gebiet D muß kein Sterngebiet sein. D einfach zusammenhängend reicht.

Oder, falls D nur offen ist, muß der Integrationsweg in D nullhomotop oder in D nullhomlog sein

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de