www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Centrum von A_{n}
Centrum von A_{n} < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Centrum von A_{n}: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:31 Mo 21.05.2007
Autor: Moe007

Aufgabe
Bestimme [mm] Z(S_{n}) [/mm] und [mm] Z(A_{n}) [/mm] für [mm] n\ge3 [/mm]

Hallo,
ich hab die Aufgabe zum Teil gelöst, komm aber bei der Bestimmung von [mm] Z(A_{n}) [/mm] nicht weiter. Ich hoffe, es kann mir da jemand weiter helfen.

Wenn G eine Gruppe ist, dann ist ja das Zentrum Z(G) so definiert: Z(G) = { g [mm] \in [/mm] G | gh = hg [mm] \forall [/mm] h [mm] \in [/mm] G}.

Für [mm] Z(S_{n}) [/mm] habe ich herausbekommen, dass [mm] Z(S_{n}) [/mm] = {id} ist, da [mm] \id \circ \sigma [/mm] = [mm] \sigma \circ [/mm] id [mm] \forall \sigma \in S_{n}. [/mm]
D.h. [mm] \forall \sigma \in S_{n}, \sigma \not= [/mm] id [mm] \exists \tau \in S_{n}: \sigma \tau \not= \tau \sigma. [/mm] Also gibt es i [mm] \not= [/mm] j [mm] \in [/mm] { 1,...,n } mit [mm] \sigma(i) [/mm] = j. Da n [mm] \ge [/mm] 3 [mm] \exists [/mm] k [mm] \in [/mm] { 1,..., n } \ {i,j} und es ist [mm] \sigma \tau_{jk}(i) [/mm] = [mm] \sigma(i) [/mm] = j. Andererseits ist [mm] \tau_{jk} \sigma(i) [/mm] = [mm] \tau_{jk}(j) [/mm] = k [mm] \not= [/mm] j.
Also [mm] \sigma \not\in Z(S_{n}). [/mm]

Nun weiß ich, dass [mm] A_{n} [/mm] die alternierende Gruppe ist. Das ist doch die Menge aller Permutationen mit sign = 1 oder?
Wie kann ich das Zentrum von [mm] A_{n} [/mm] finden? Transpositionen sind nicht in [mm] A_{n}, [/mm] da sie sign = -1 haben oder?

Danke schonmal für die Hilfe.

Viele Grüße,
Moe


        
Bezug
Centrum von A_{n}: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 Mi 23.05.2007
Autor: Moe007

Hallo,
ich hoffe, es kann mir jemand einen Tipp geben, wie ich das Zentrum von [mm] A_{n} [/mm] bestimmen kann. Bis jetzt weiß ich, dass auch die Identität zum Zentrum gehört.
Das Zentrum von [mm] A_{n} [/mm] ist so definiert oder? [mm] Z(A_{n}) [/mm] = { [mm] \sigma \in A_{n}, [/mm] wobei  [mm] sign(\sigma) [/mm] = 1 |  [mm] \sigma \tau [/mm] = [mm] \tau \sigma \forall \tau \in A_{n} [/mm] }
Aber wie finde ich andere geraden Permutationen? Wie muss ich da genau vorgehen? Oder gibt es in [mm] Z(A_{n}) [/mm] auch nur die Identität wie bei [mm] Z_(S_{n})? [/mm]
Stimmt der Beweis für [mm] Z_(S_{n}) [/mm] so?
Ich hoffe, es kann mir jemand weiterhelfen, ich komm bei der Aufgabe allein nicht weiter...

Viele Grüße und schonmal danke im Voraus.

Moe

Bezug
        
Bezug
Centrum von A_{n}: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 29.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de