www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Charakteristische Funktion
Charakteristische Funktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Charakteristische Funktion: imaginärer Anteil
Status: (Frage) beantwortet Status 
Datum: 02:47 Di 08.05.2012
Autor: Chuck12

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hey Leute,

kurze Frage zu charakteristischen Funktionen der Form:

E[e^(itx)]

Welchen Vorteil besitzt die Verwendung des imaginären Anteils, bzw. wie kann ich mir seine Auswirkung hier vorstellen? Mir ist bewusst, dass ich die momenterzeugende Funktion um "i" (imaginäre Zahl) erweitern kann und dann eine endliche und wohldefinierte charakteristische Funktion erhalte, die durch die Beziehung von Sinus und Cosinus an ein Intervall gebunden ist.

Die Aussage verstehe ich leider nur halb und das "mir ist bewusst" können wir gerne durch "ich habe gelesen, dass" ersetzen :(

Kann mir es einer anschaulich verdeutlichen (Unterschied der Funktionen und Wirkung...). Warum existiert diese Funktion immer ("i" kann eine komplexe Zahl sein, muss aber nicht oder? Was hilft sie mir wenn es gerade keine ist, bzw. wie verbesser sie die Formel wenn sie eine ist? )?
Bzw warum sollte es Fälle geben, in denen die Momenterzeugende Funktion versagt? Ich hatte es bisher so verstanden, dass man die Momenterzeugende Funktion als eine Art (!) Dichtefunktion interpretieren kann... Was soll ich da mit negativen Wurzeln, bzw. was sollen sie mir helfen?

"Eulerformel" wird in diesem Zusammenhang gerne in den Raum geworfen... Aber das ist ja nicht nur "eine" :(

vielen Dank :)



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Charakteristische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Fr 18.05.2012
Autor: Gonozal_IX

Hi Charles,

das Einfügen des imaginären Anteils bewirkt hier, dass dieser Ausdruck für reellwertige Zufallsvariablen überhaupt wohldefiniert ist.

Lassen wir den imaginären Anteil mal weg, dann steht da:

[mm] $E[e^{tX}]$ [/mm]

Wer sagt dir, dass dieser Erwartungswert überhaupt für alle t existiert?
Im Normalfall tut er das nämlich gar nicht.

Fügen wir aber den imaginären Anteil an, gilt:

[mm] $\left|E[e^{itX}]\right| \le E[|e^{itX}|] [/mm] = E[1] = 1$ (da [mm] $\forall x\in\IR: |e^{ix}| [/mm] = 1$ )und damit ist sichergestellt, dass dieser Erwartungswert auch wirklich immer existiert.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de