Charakteristisches Polynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei A = [mm] \pmat{-3 & 2 & 0 & -2 \\ -2 & -1 & 6 & 2 \\ -2 & 2 & -1 & -2 \\ 2 & -4 & 6 & 5}. [/mm] Berechnen Sie das chpol! |
Meine Frage, bzw. mein Ansatz ist ja folgender. Das Charakteristische Polynom wird ja so berechnet:
[mm] chpol_A(x) [/mm] = [mm] det(x\cdot [/mm] E - A)
= [mm] \pmat{x+3 & -2 & 0 & 2 \\ 2 & x+1 & -6 & -2 \\ 2 & -2 & x+1 & 2 \\ -2 & 4 & -6 & x-5}
[/mm]
So... Bis hierher ist das auch supertoll und funktioniert wunderbar. Aber ich habe jetzt hier knapp 4 Seiten Umformungen der Matrix ohne sie auf Treppennormalform zu bekommen... Habt ihr eine Idee wie ich da anfangen muss. Ich bin total verzweifelt...
Ich habe folgendes versucht: IV + II, dann II. Spalte - IV. Spalte und dann II. Spalte + III. Spalte.
Aber da komm ich nicht weiter. Oder muss ich hier Entickeln nach der ersten Spalte?
|
|
|
|
Hallo stekoe2000,
> Sei A = [mm]\pmat{-3 & 2 & 0 & -2 \\ -2 & -1 & 6 & 2 \\ -2 & 2 & -1 & -2 \\ 2 & -4 & 6 & 5}.[/mm]
> Berechnen Sie das chpol!
> Meine Frage, bzw. mein Ansatz ist ja folgender. Das
> Charakteristische Polynom wird ja so berechnet:
>
> [mm]chpol_A(x)[/mm] = [mm]det(x\cdot[/mm] E - A)
> = [mm]\pmat{x+3 & -2 & 0 & 2 \\ 2 & x+1 & -6 & -2 \\ 2 & -2 & x+1 & 2 \\ -2 & 4 & -6 & x-5}[/mm]
>
> So... Bis hierher ist das auch supertoll und funktioniert
> wunderbar. Aber ich habe jetzt hier knapp 4 Seiten
> Umformungen der Matrix ohne sie auf Treppennormalform zu
> bekommen... Habt ihr eine Idee wie ich da anfangen muss.
> Ich bin total verzweifelt...
>
> Ich habe folgendes versucht: IV + II, dann II. Spalte - IV.
> Spalte und dann II. Spalte + III. Spalte.
>
> Aber da komm ich nicht weiter. Oder muss ich hier Entickeln
> nach der ersten Spalte?
Ich würde spontan nach der 3.Spalte entwickeln (oder nach der 1.Zeile), denn da steckt ja eine 0 drin, so dass dieser Summand in der Laplaceentwicklung schonmal wegfällt.
zB nach der 3.Spalte:
[mm] $det(A)=\underbrace{0\cdot{}det\pmat{2&x+1&-2\\2&-2&2\\-2&4&x-5}}_{\text{der oben erwähnte nette Summand ;-)}} [/mm] \ [mm] -(-6)\cdot{}det\pmat{x+3&-2&2\\2&-2&2\\-2&4&x-5} [/mm] \ + \ [mm] (x+1)\cdot{}det\pmat{x+3&-2&2\\2&x+1&-2\\-2&4&x-5} [/mm] \ [mm] -(-6)\cdot{}det\pmat{x+3&-2&2\\2&x+1&-2\\2&-2&2}$
[/mm]
Die Determinanten dieser drei verbleibenden [mm] $3\times [/mm] 3$-Streichmatrizen kannst du nun jeweils mit Sarrus berechnen ...
LG
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:18 Sa 13.12.2008 | Autor: | stekoe2000 |
Ja, danke, hab nach der 1. Zeile gemacht, mich nur davor gesträubt, weils so viel Rechnerei ist ;) Danke für den Hinweis. Es kommt fast das raus, was ich suchte. Rechnen ist nicht meine Stärke ;)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:34 Sa 13.12.2008 | Autor: | felixf |
Hallo
> Ja, danke, hab nach der 1. Zeile gemacht, mich nur davor
> gesträubt, weils so viel Rechnerei ist ;) Danke für den
> Hinweis. Es kommt fast das raus, was ich suchte. Rechnen
> ist nicht meine Stärke ;)
Alternativ kannst du auch erst die letzte zu der 2. und 3. Zeile addieren, und dann nach der 1. Spalte entwickeln. Dann fallen sogar zwei Summanden weg.
LG Felix
|
|
|
|