www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Chi-Quadrat berechnen
Chi-Quadrat berechnen < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chi-Quadrat berechnen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:08 Sa 02.11.2013
Autor: GuckGuck

Aufgabe
Sie sehen nachfolgend eine zweidimensionale Häufigkeitstabelle zu einem Experiment mit Arnika, das zur Wundheilung gegeben wurde.

           | Gabe von Arnika
Heilerfolg | ja  | nein | Randsumme
ja         | 18  | 12   |
nein       |  9  | 16   |
Randsumme  |     |      |

Berechnen Sie die zu erwartenden Häufigkeiten in einer zweiten Tabelle.

Berechnen Sie die Größe Chi-Quadrat.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich kann den ersten Teil der Aufgabe lösen (zu erwartende Häufigkeiten berechnen). Aber in der Vorlesung haben wir für Chi-Quadrat eine sehr komplizierte Formel bekommen, die mich total verwirrt. Ich weiß nicht, was ich wo einsetzen muss und wie das da gerechnet wird. Warum stehen da zwei Summenzeichen? Werden die multipliziert?

Formel: Chi-Quadrat = [mm] \summe_{i=1}^{I}\summe_{j=1}^{J} \bruch{(h_{gem. i,j} - h_{erw. i,j})^{2}}{h_{erw. i,j}} [/mm]

        
Bezug
Chi-Quadrat berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Sa 02.11.2013
Autor: chrisno


> Sie sehen nachfolgend eine zweidimensionale
> Häufigkeitstabelle zu einem Experiment mit Arnika, das zur
> Wundheilung gegeben wurde.
>  
> | Gabe von Arnika
>  Heilerfolg | ja  | nein | Randsumme
>  ja         | 18  | 12   |
>  nein       |  9  | 16   |
>  Randsumme  |     |      |
>  
> Berechnen Sie die zu erwartenden Häufigkeiten in einer
> zweiten Tabelle.
>  
> Berechnen Sie die Größe Chi-Quadrat.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich kann den ersten Teil der Aufgabe lösen (zu erwartende
> Häufigkeiten berechnen). Aber in der Vorlesung haben wir
> für Chi-Quadrat eine sehr komplizierte Formel bekommen,
> die mich total verwirrt. Ich weiß nicht, was ich wo
> einsetzen muss und wie das da gerechnet wird. Warum stehen
> da zwei Summenzeichen? Werden die multipliziert?
>  
> Formel: Chi-Quadrat = [mm]\summe_{i=1}^{I}\summe_{j=1}^{J} \bruch{(h_{gem. i,j} - h_{erw. i,j})^{2}}{h_{erw. i,j}}[/mm]
>  

Die Diskussion wird einfacher, wenn Du die Häufigkeiten auch angibst.
So wie ich das sehe, ist I = J = 2. Dann ziehe ich die Summe mal auseinander. Zuerst die innere Summe über j:
Chi-Quadrat = [mm]\summe_{i=1}^{2}\summe_{j=1}^{2} \bruch{(h_{gem. i,j} - h_{erw. i,j})^{2}}{h_{erw. i,j}} = \summe_{i=1}^{2}\left( \bruch{(h_{gem. i,1} - h_{erw. i,1})^{2}}{h_{erw. i,1}} + \bruch{(h_{gem. i,2} - h_{erw. i,2})^{2}}{h_{erw. i,2}}\right) [/mm]
Nun die äußere Summe über i:
[mm] = \bruch{(h_{gem. 1,1} - h_{erw. 1,1})^{2}}{h_{erw. 1,1}} + \bruch{(h_{gem. 1,2} - h_{erw. 1,2})^{2}}{h_{erw. 1,2}} + \bruch{(h_{gem. 2,1} - h_{erw. 2,1})^{2}}{h_{erw. 2,1}} + \bruch{(h_{gem. 2,2} - h_{erw. 2,2})^{2}}{h_{erw. 2,2}}[/mm]

Bezug
                
Bezug
Chi-Quadrat berechnen: Lösung
Status: (Frage) beantwortet Status 
Datum: 11:02 Sa 02.11.2013
Autor: GuckGuck


>  Chi-Quadrat = [mm]\summe_{i=1}^{2}\summe_{j=1}^{2} \bruch{(h_{gem. i,j} - h_{erw. i,j})^{2}}{h_{erw. i,j}} = \summe_{i=1}^{2}\left( \bruch{(h_{gem. i,1} - h_{erw. i,1})^{2}}{h_{erw. i,1}} + \bruch{(h_{gem. i,2} - h_{erw. i,2})^{2}}{h_{erw. i,2}}\right) [/mm]
> Nun die äußere Summe über i:
>  [mm]= \bruch{(h_{gem. 1,1} - h_{erw. 1,1})^{2}}{h_{erw. 1,1}} + \bruch{(h_{gem. 1,2} - h_{erw. 1,2})^{2}}{h_{erw. 1,2}} + \bruch{(h_{gem. 2,1} - h_{erw. 2,1})^{2}}{h_{erw. 2,1}} + \bruch{(h_{gem. 2,2} - h_{erw. 2,2})^{2}}{h_{erw. 2,2}}[/mm]

Also so?

Zu erwartende Häufigkeiten: 32,7%, 21,8%, 16,4%, 29,1%

[mm] \summe_{i=1}^{2} \summe_{j=1}^{2} \bruch{(h_{gem. i,j} - h_{erw. i,j})^{2}}{h_{erw. i,j}} [/mm] = [mm] \bruch{(18 - 0,327)^{2}}{0,327} [/mm] + [mm] \bruch{(12 - 0,218)^{2}}{0,218} [/mm] + [mm] \bruch{(9 - 0,164)^{2}}{0,164} [/mm] + [mm] \bruch{(16 - 0,291)^{2}}{0,291} [/mm] = 2916

Bezug
                        
Bezug
Chi-Quadrat berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Sa 02.11.2013
Autor: chrisno

Die Summe aufdröseln mache ich gerne. Im Weiteren bin ich nicht sicher. Mir kommt das Ergebnis zu groß vor. Daher müsstest Du nun die Definitionen von [mm] $g_{gem}$ [/mm] und [mm] $h_{erwartet}$ [/mm] angeben.

Bezug
                                
Bezug
Chi-Quadrat berechnen: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 So 03.11.2013
Autor: GuckGuck

Danke, chrisno, für deine Hilfe. Ich habe die zu erwartende Häufigkeit mit der relativen Häufigkeit verwechselt. Das Ergebnis ist deshalb tatsächlich zu groß.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de