www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Chinesischer Restsatz
Chinesischer Restsatz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chinesischer Restsatz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:15 Fr 23.05.2014
Autor: xx_xx_xx

Aufgabe
Das folgende System simultaner Kongruenzen ist zum beispiel für c=7 offensichtlich lösbar

x [mm] \equiv [/mm] 7 (mod 51)
x [mm] \equiv [/mm] c (mod 42)

Bestimme alle c [mm] \in \IZ, [/mm] sodass eine Lösung existiert und bestimme eine Lösung für das betragsmäßig kleinste gefundene c [mm] \in \IN [/mm]

Hallo,

also ich kann das System ja auch in folgenden umwandeln:

x [mm] \equiv [/mm] 7 (mod  3)  [mm] \gdw [/mm]  x [mm] \equiv [/mm] 1 (mod  3)
x [mm] \equiv [/mm] 7 (mod 17)
x [mm] \equiv [/mm] c (mod  3)
x [mm] \equiv [/mm] c (mod  2)
x [mm] \equiv [/mm] c (mod  7)

daraus kann ich schließen, dass c die Form c=a*3+1 hat, a [mm] \in \IN [/mm]

Ich müsste jetzt ja sozusagen eine von dem (mod 3) "wegbekommen", aber wie mache ich dass, kann ich die erste weglassen und dann c als a*3+1 schreiben, also folgende benutzen:

x [mm] \equiv [/mm] 7 (mod 17)
x [mm] \equiv [/mm] a*3+1 (mod  3)
x [mm] \equiv [/mm] a*3+1 (mod  2)
x [mm] \equiv [/mm] a*3+1 (mod  7)

?

Viele Dank schonmal für die Hilfe!

        
Bezug
Chinesischer Restsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Fr 23.05.2014
Autor: reverend

Hallo,

das sieht soweit gut aus.

> Das folgende System simultaner Kongruenzen ist zum beispiel
> für c=7 offensichtlich lösbar
>  
> x [mm]\equiv[/mm] 7 (mod 51)
>  x [mm]\equiv[/mm] c (mod 42)
>  
> Bestimme alle c [mm]\in \IZ,[/mm] sodass eine Lösung existiert und
> bestimme eine Lösung für das betragsmäßig kleinste
> gefundene c [mm]\in \IN[/mm]
>  Hallo,
>  
> also ich kann das System ja auch in folgenden umwandeln:
>  
> x [mm]\equiv[/mm] 7 (mod  3)  [mm]\gdw[/mm]  x [mm]\equiv[/mm] 1 (mod  3)
>  x [mm]\equiv[/mm] 7 (mod 17)
>  x [mm]\equiv[/mm] c (mod  3)
>  x [mm]\equiv[/mm] c (mod  2)
>  x [mm]\equiv[/mm] c (mod  7)
>  
> daraus kann ich schließen, dass c die Form c=a*3+1 hat, a
> [mm]\in \IN[/mm]
>
> Ich müsste jetzt ja sozusagen eine von dem (mod 3)
> "wegbekommen", aber wie mache ich dass, kann ich die erste
> weglassen und dann c als a*3+1 schreiben, also folgende
> benutzen:
>  
> x [mm]\equiv[/mm] 7 (mod 17)
>  x [mm]\equiv[/mm] a*3+1 (mod  3)
>  x [mm]\equiv[/mm] a*3+1 (mod  2)
>  x [mm]\equiv[/mm] a*3+1 (mod  7)
>  
> ?

Ja, das geht. Besser ist aber, Du lässt die andere Kongruenz mod 3 weg, denn die jetzt hier steht, ist dazu äquivalent. Du hast also nur [mm] x\equiv 1\bmod{3}. [/mm]

Als nächstes sollst Du feststellen, dass das System für jedes $a$ lösbar ist. Das betragsmäßig kleinste [mm] c\in\IZ [/mm] ist also $c=1$, die gesuchte Lösung ist [mm] x\equiv 211\bmod{714}. [/mm]

Du musst nur noch den Weg finden, aber die Zwischenergebnisse der einzelnen Schritte hast Du jetzt.

Grüße
reverend


Bezug
        
Bezug
Chinesischer Restsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Fr 23.05.2014
Autor: abakus


> Das folgende System simultaner Kongruenzen ist zum beispiel
> für c=7 offensichtlich lösbar

>

> x [mm]\equiv[/mm] 7 (mod 51)
> x [mm]\equiv[/mm] c (mod 42)

>

> Bestimme alle c [mm]\in \IZ,[/mm] sodass eine Lösung existiert und
> bestimme eine Lösung für das betragsmäßig kleinste
> gefundene c [mm]\in \IN[/mm]
> Hallo,

>

> also ich kann das System ja auch in folgenden umwandeln:

>

> x [mm]\equiv[/mm] 7 (mod 3) [mm]\gdw[/mm] x [mm]\equiv[/mm] 1 (mod 3)
> x [mm]\equiv[/mm] 7 (mod 17)
> x [mm]\equiv[/mm] c (mod 3)
> x [mm]\equiv[/mm] c (mod 2)
> x [mm]\equiv[/mm] c (mod 7)

>

> daraus kann ich schließen, dass c die Form c=a*3+1 hat, a
> [mm]\in \IN[/mm]

>

> Ich müsste jetzt ja sozusagen eine von dem (mod 3)
> "wegbekommen", aber wie mache ich dass, kann ich die erste
> weglassen und dann c als a*3+1 schreiben, also folgende
> benutzen:

>

> x [mm]\equiv[/mm] 7 (mod 17)
> x [mm]\equiv[/mm] a*3+1 (mod 3)
> x [mm]\equiv[/mm] a*3+1 (mod 2)
> x [mm]\equiv[/mm] a*3+1 (mod 7)

>

> ?

>

> Viele Dank schonmal für die Hilfe!

Hallo,
du kannst auch ohne Kongruenzen umformulieren in:
x=51k+7 und x=42n+c (mit ganzzahligen Faktoren k und n).
Gleichsetzen liefert 51k+7=42n+c bzw. 
51k-42n=c-7
Links wird der ggT ausgeklammert:
3(17k-14n)=c-7.
Das ist nur lösbar, wenn c-7 durch 3 teilbar ist.
Das betragsmäßig kleinste c für diese Forderung ist c=1.
Nun zeige noch, dass für jeden durch 3 teilbaren Wert von (c-7) auch ein entsprechendes Paar von Faktoren (k;n) existiert, das diese Gleichung erfüllt.
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de