www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Chinesischer Restsatz
Chinesischer Restsatz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chinesischer Restsatz: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 14:48 Do 15.10.2009
Autor: Tina85

In Algebraische Zahlentheorie von Jürgen Neukirch haben wir gelesen, dass folgendes gelten soll:
Anstelle die sämtlichen Kongruenzen [mm] F(x_{1},...,x_{n})\equiv [/mm] 0 mod m zu betrachten kann man nach dem chin. Restsatz auch die Kongruenzen [mm] F(x_{1},...,x_{n}) \equiv [/mm] 0 mod [mm] p^{v} [/mm] für alle v [mm] \in \IN [/mm] betrachten.

Um den chin. Restsatz anwenden zu können müssten doch eigentlich die [mm] p^{v} [/mm] teilerfremd sein, was ja nicht der Fall ist.

Kann uns jemand ein paar Tipps oder eine passende Formulierung des chin. Restsatzes geben?! Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Chinesischer Restsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Do 15.10.2009
Autor: felixf

Hallo!

> In Algebraische Zahlentheorie von Jürgen Neukirch haben
> wir gelesen, dass folgendes gelten soll:
>
>  Anstelle die sämtlichen Kongruenzen
> [mm]F(x_{1},...,x_{n})\equiv[/mm] 0 mod m zu betrachten kann man
> nach dem chin. Restsatz auch die Kongruenzen
> [mm]F(x_{1},...,x_{n}) \equiv[/mm] 0 mod [mm]p^{v}[/mm] für alle v [mm]\in \IN[/mm]
> betrachten.
>  
> Um den chin. Restsatz anwenden zu können müssten doch
> eigentlich die [mm]p^{v}[/mm] teilerfremd sein, was ja nicht der
> Fall ist.

Doch, das ist nur etwas ungluecklich formuliert:

Es wird gesagt, dass
[mm] $F(x_1, \dots, x_n) \equiv [/mm] 0 [mm] \pmod{m}$ [/mm] fuer alle $m [mm] \in \IN_{>0}$ [/mm] anzuschauen

das gleiche ist wie
[mm] $F(x_1, \dots, x_n) \equiv [/mm] 0 [mm] \pmod{p^v}$ [/mm] fuer alle Primzahlen $p$ und alle $v [mm] \in \IN$ [/mm] anzuschauen


Fuer eine Zahl $m [mm] \in \IN_{>0}$ [/mm] mit $m = [mm] \prod_{i=1}^t p_i^{v_i}$ [/mm] ist ja [mm] $F(x_1, \dots, x_n) \equiv [/mm] 0 [mm] \pmod{m}$ [/mm] das gleiche wie [mm] $F(x_1, \dots, x_n) \equiv [/mm] 0 [mm] \pmod{p_i^{v_i}}$ [/mm] fuer $i = 1, [mm] \dots, [/mm] t$.

Und wenn du [mm] $F(x_1, \dots, x_n) \equiv [/mm] 0 [mm] \pmod{p^v}$ [/mm] anschaust, ist es das gleiche als wenn du $m = [mm] p^v$ [/mm] nimmst.

Vermutlich geht es um Nullstellen haben (oder keine Nullstellen haben?), dann kann man das ganze so formulieren:

Die beiden Aussagen sind aequivalent:
a) Fuer jedes $m [mm] \in \IN_{>0}$ [/mm] hat [mm] $F(x_1, \dots, x_n) \equiv [/mm] 0 [mm] \pmod{m}$ [/mm] eine Loesung;
b) Fuer jede Primzahl $p$ und jedes $v [mm] \in \IN$ [/mm] hat [mm] $F(x_1, \dots, x_n) \equiv [/mm] 0 [mm] \pmod{p^v}$ [/mm] eine Loesung.


LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de