www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Cholesky - Voraussetzungen
Cholesky - Voraussetzungen < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cholesky - Voraussetzungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:00 Sa 02.12.2006
Autor: mathestud

Hallo,
ich hätte eine Frage zur Cholesky-Zerlegung. Nomalerweise wird ja Symmetrie und positive Definitheit gefordert. Ist diese Zerlegung auch für nicht symmetrische Matrizen, bzw. für symmetrische aber negativ definite Matrizen möglich?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Cholesky - Voraussetzungen: positiv definit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Sa 02.12.2006
Autor: Bastiane

Hallo mathestud!

> Hallo,
>  ich hätte eine Frage zur Cholesky-Zerlegung. Nomalerweise
> wird ja Symmetrie und positive Definitheit gefordert. Ist
> diese Zerlegung auch für nicht symmetrische Matrizen, bzw.
> für symmetrische aber negativ definite Matrizen möglich?

Zumindest die positiv Definitheit wurde hier vor kurzem diskutiert.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Cholesky - Voraussetzungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 So 03.12.2006
Autor: mathestud

Ich hab gesehen dass die positive Definitheit schon diskutiert wurde. Aber bei mir war eben diese spezielle Problemstellung mit symmetrisch dazu und deswegen wollte ich wissen ob die Cholesky Zerlegung  evtl mit diesen Voraussetzungen auch funktioniert.
Danke für die Hilfe!

Bezug
        
Bezug
Cholesky - Voraussetzungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Sa 02.12.2006
Autor: dormant

Hi!

Die Cholesky Zerlegung hat man sich ausgedacht, um gerade von dieser speziellen Struktur der Matrix (symm, + d.) gebrauch zu machen. Dadurch schränkt man sich auf eine kleine Klasse von Matrizen, dafür gewinnt man aber an Rechenzeit, besonders bei sehr großen Matrizen. Die Idee ist, dass symm. + d. Matrizen in bestimmten Anwendungen vorkommen.

So, wenn man jetzt die Voraussatzungen entschärft, ist man einfach wieder zurück bei der LR-Zerlegung angekommen.

Gruß,
dormant

Bezug
                
Bezug
Cholesky - Voraussetzungen: kl. Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:35 So 03.12.2006
Autor: mathemaduenn

Hallo dormant,

> Die Cholesky Zerlegung hat man sich ausgedacht, um gerade
> von dieser speziellen Struktur der Matrix (symm, + d.)
> gebrauch zu machen. Dadurch schränkt man sich auf eine
> kleine Klasse von Matrizen, dafür gewinnt man aber an
> Rechenzeit, besonders bei sehr großen Matrizen. Die Idee
> ist, dass symm. + d. Matrizen in bestimmten Anwendungen
> vorkommen.
>  
> So, wenn man jetzt die Voraussatzungen entschärft, ist man
> einfach wieder zurück bei der LR-Zerlegung angekommen.

Ich wollte noch anmerken das die Aussage "besonders bei sehr großen Matrizen" so nicht stimmt. Man braucht die Hälfte der Zeit unabhängig von der Dimension. Bei sehr großen Matrizen sollte man iterative Verfahren verwenden.
viele grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de