www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - Chordale Komplemente
Chordale Komplemente < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chordale Komplemente: was ist ein chord. Komplement
Status: (Frage) beantwortet Status 
Datum: 13:06 Mi 10.12.2008
Autor: Ernesto22

Hallo,

was ein chordaler Graph ist, ist mir sehr wohl bekannt. Was ist jedoch ein chordaler Komplement? Kann mir einer hierbei behilflich sein?

Vielleich würd eich es verstehen, wenn einer mir kurz erklären könnte, wie ein chordaler Komplement zu einem chordalen Graphen mit 4 Knoten (als Rechteck) aussieht, das Diagonal mit zwei Kanten verbunden ist ( Sehne).

Vielen Dank

        
Bezug
Chordale Komplemente: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Mi 10.12.2008
Autor: reverend

Das ist kein feststehender Begriff, sondern besagt, dass das Komplement eines Graphen eben chordal ist. Dazu muss der Graph nicht unbedingt selbst chordal sein. Sind Graph und Komplement beide chordal, nennt man den Graphen oft co-chordal.

Wenn Du auf Englisch googelst, findest Du mehr zu chordal complement.

Bezug
                
Bezug
Chordale Komplemente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Mi 10.12.2008
Autor: Ernesto22

Das ist aber gerade das was ich nicht verstehe.
Ich habe auch schon auf englisch gegooglet.
Aber die Aussage, das ein das Komplement eines chordalen Graphen ebenfalls chordal sei, macht mich verrückt!

Du gibst mir doch recht, das ein Graph G mit 4 Knoten, als Rechteck, mit einer Diagonalen Kante, ein chordaler Graph ist oder?

Das Komplement zu diesem Graphen [mm] \overline{G} [/mm] würde doch so aussehen, das es nur noch die andere Diagonale Kante vorhanden ist.
Ursprünglich waren 5 Kanten vorhanden. Jetzt nur noch eine!
Ist das ein chordales Komplement?

Vermutlich nicht. Weil es kein Kreis mehr ist. Also wie kann das Komplement chordals sein?

Kannst du mir sagen, wie das chordale Komplement zu dem graphen G aussieht?

Bezug
                        
Bezug
Chordale Komplemente: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Mi 10.12.2008
Autor: reverend

Es gibt (Eindeutigkeit des Inversen!) i.a. nur ein Komplement zu einem Graphen. Das kann dann chordal sein oder nicht. Das Komplement zu dem von Dir beschriebenen Graphen ist nicht chordal. Hättest Du dieses Komplement aber vorliegen und würdest davon das Komplement bilden, erhieltest Du ja den ursprünglichen Graphen, und der wäre chordal...


Bezug
                                
Bezug
Chordale Komplemente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 Mi 10.12.2008
Autor: Ernesto22

Ok, das bringt dann doch bisschen Licht ins dunkle :-)

Letzte Frage:

Wenn ein Graph G chordal ist, und das zughörige [mm] \overline{G} [/mm] nicht chordal sei (aber wie du sagtest, wenn ich das Komplement von [mm] \overline{G} [/mm] bilden würde, dann wäre der ursprüngliche Graph chordal) so ist [mm] \overline{G} [/mm] immer chordal?

Also es spielt doch keine Rolle ob der dargestellt Graph [mm] \overline{G} [/mm] chordal ist oder nicht. Da der ursprüngliche Graph chrodal ist, ist auch [mm] \overline{G} [/mm] immer chordal oder?

Vielen Dank für deine Hilfe

Bezug
                                        
Bezug
Chordale Komplemente: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Mi 10.12.2008
Autor: reverend

Nein, es ist eine Besonderheit, wenn G und [mm] \overline{G} [/mm] beide chordal sind. Aus dem einen ist das andere nicht zu folgern, egal in welcher Richtung.

In dieser Notation bräuchte ich jetzt eine Doppellinie über dem G...

Darum wechsle ich einmal in eine andere Schreibweise: sei [mm] G^{-1} [/mm] das Komplement von G. Wenn G chordal ist, dann ist es [mm] (G^{-1})^{-1} [/mm] auch, weil ja [mm] G=(G^{-1})^{-1} [/mm] gilt.

Eine Aussage über [mm] G^{-1} [/mm] ist damit aber nicht getroffen und im allgemeinen auch nicht zu treffen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de