www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Compositions, generating func
Compositions, generating func < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Compositions, generating func: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:44 Do 15.11.2012
Autor: hannahmaontana

Aufgabe
Let [mm] g_{a,b}(n) [/mm] be the number of compositions of n with parts a and b, and let [mm] h_{a,b}(n) [/mm] be the number of compositions of n with parts of the form a+bk for [mm] k\in [/mm] N. Prove that [mm] g_{a,b}(n) =h_{a,b}(n+a) [/mm]
a) using generating functions
b) combinatorially

Eine composition of n haben wir definiert als die zerlegung von n in eine summe aus natürlichen zahlen. jeder summand wird als part bezeichnet. zB n=a+b+c+d eine composition von n, dann sind a,b,c,d die parts.

Ich bin mir nicht ganz sicher, ob ich die aufgabenstellung richtig verstanden hab. so wie ich das sehe, muss eine composition, damit zu [mm] g_{a,b}(n) [/mm]  hinzugezählt wird nur die parts a und b enthalten und der rest ist egal.
zB: n=a+b+x+y+...
analog für [mm] h_{a,b}(n), [/mm] n=a+bk+x+y+...

zu teilaufgabe a) ist mir bisher noch nichts eingefallen. hat jmd einen tipp für mich?

zu b) habe ich mir folgendes überlegt:
die ausage lautet, dass es genauso viele möglichkeiten für
[mm] n=a+b+g_1+g_2+... [/mm] gibt, wie für [mm] n+a=a+bk+h_1+h_2+..... [/mm]
[mm] h_i [/mm] und [mm] g_i [/mm] können irgendwas sein, solange die summe stimmt. n,k,a und b sind hingegen fest.
selbstverständlich dürfen die summe von a und b und die summe von a und bk höchstens so groß wie n bzw n+a sein, damit es mindestens eine möglichkeit gibt.
im allgemeinen gibt es umso mehr möglichkeiten n als composition zu schreiben, je größer n ist. demnach gibt es mehr möglichkeiten n+a als irgendeine composition zu schreiben, als n. allerdings darf das nicht der fall sein, weil wenn man k=1 wählen würde müsste es gleich viele möglichkeiten für compositionen von n und n+a geben.
also dürfte die aussage, die zu beweisen ist doch gar nicht stimmen!

        
Bezug
Compositions, generating func: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Fr 30.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de