www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Cosinusfunktion als Reihe
Cosinusfunktion als Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cosinusfunktion als Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 Mi 08.02.2012
Autor: EvelynSnowley2311

huhu,

ich will das Konvergenzverhalten untersuchen:

[mm] \limes_{n\rightarrow\infty} [/mm] sup [mm] |\bruch{\bruch{x^{2n+2}}{(2n+2)!}}{\bruch{x^{2n}}{(2n)!}}| [/mm]  nach dem einen oder andren Umformungsschritt:

[mm] \limes_{n\rightarrow\infty} [/mm] sup [mm] |\bruch{x^{2n+2}\*(2n)!}{x^{2n}\*(2n+2)(2n+1)(2n)!}| [/mm] = [mm] \bruch{x^2}{4n^2+6n+2}| [/mm] .. muss ich jetzt sagen, dass es nur konvergiert für n > [mm] x^2\over6 [/mm] - [mm] 2n^2\over18 [/mm]   - [mm] 1\over18 [/mm]  ?

        
Bezug
Cosinusfunktion als Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Mi 08.02.2012
Autor: statler

Mahlzeit!

> ich will das Konvergenzverhalten untersuchen:

Schön.

> [mm]\limes_{n\rightarrow\infty}[/mm] sup
> [mm]|\bruch{\bruch{x^{2n+2}}{(2n+2)!}}{\bruch{x^{2n}}{(2n)!}}|[/mm]  

Anscheinend mit dem Quotientenkriterium.

> nach dem einen oder andren Umformungsschritt:
>  
> [mm]\limes_{n\rightarrow\infty}[/mm] sup
> [mm]|\bruch{x^{2n+2}\*(2n)!}{x^{2n}\*(2n+2)(2n+1)(2n)!}|[/mm] =
> [mm]\bruch{x^2}{4n^2+6n+2}|[/mm] .. muss ich jetzt sagen, dass es
> nur konvergiert für n > [mm]x^2\over6[/mm] - [mm]2n^2\over18[/mm]   -
> [mm]1\over18[/mm]  ?  

Und was ist nun der Grenzwert? Und was sagt das Q.-kriterium?

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Cosinusfunktion als Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Mi 08.02.2012
Autor: EvelynSnowley2311

woops ich glaub ich hab die [mm] (-1)^k [/mm] vergessen mist... dann müsste glaub ich vor dem x nochn minus stehen....

Jedenfalls ist der Grenzwert bzw Konvergenzverhalten abhängig von x oder?

Bezug
                        
Bezug
Cosinusfunktion als Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Mi 08.02.2012
Autor: schachuzipus

Hallo,


> woops ich glaub ich hab die [mm](-1)^k[/mm] vergessen mist... dann
> müsste glaub ich vor dem x nochn minus stehen....

Die würde doch im Betrag wegfallen ...

Du solltest mal die Reihe posten, die du untersuchen sollst!

>  
> Jedenfalls ist der Grenzwert bzw Konvergenzverhalten
> abhängig von x oder?

Ja, du bekommst ein Konnvergenzintervall ...

Gruß

schachuzipus


Bezug
                                
Bezug
Cosinusfunktion als Reihe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:40 Mi 08.02.2012
Autor: EvelynSnowley2311

das ist der Cosinusanteil der Exponentialreihe^^

Wie genau formuliert man so ein Konvergenzintervall?

Bezug
                                        
Bezug
Cosinusfunktion als Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Mi 08.02.2012
Autor: EvelynSnowley2311

vlt ergänzend:

für x= 1 hab ich konvergentes Verhalten raus ab n = 1
für x = 10 hab ich divergent, ab n = 12 konvergent. kann man sagen für n gegen unendlich konvergiert die Reihe für jedes x?

Bezug
                                                
Bezug
Cosinusfunktion als Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Mi 08.02.2012
Autor: statler

Hallo!

> vlt ergänzend:
>  
> für x= 1 hab ich konvergentes Verhalten raus ab n = 1
>  für x = 10 hab ich divergent, ab n = 12 konvergent. kann
> man sagen für n gegen unendlich konvergiert die Reihe für
> jedes x?

Das kann ganz so nicht sein! Für das Konvergenzverhalten einer Reihe sind die ersten eine Million Summanden unwichtig. Sie konvergiert, oder sie konvergiert nicht, von n darf das nicht abhängen. Mit dem letzten Satz meinst du wahrscheinlich das Richtige, er ist aber falsch formuliert.

Vielleicht hat schachuzipus dich auf eine falsche Fährte gelockt: Das Konvergenzintervall ist nämlich verdampt groß.

Gruß aus HH-Harburg
Dieter


Bezug
                                                        
Bezug
Cosinusfunktion als Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Mi 08.02.2012
Autor: EvelynSnowley2311

k, wenn sie konvergiert, hat sie denn einen bestimmbaren Grenzwert?

Bezug
                                        
Bezug
Cosinusfunktion als Reihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 10.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de