www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Coulommb-Gesetz
Coulommb-Gesetz < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Coulommb-Gesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mo 02.10.2006
Autor: Klio

Hallo ihr,

bei folgender Frage habe ich Probleme: Nach dem Coulomb-Gesetz wird die Kraft zwischen zwei punktförmigen Ladungen unendlich groß, wenn ihr Abstand gegen Null geht, Wie verhält sich dazu im Vergleich die Kraft F auf eine Punktladung,die beliebig nahe an eine homogen geladene, unendlich ausgedehnte Schicht gebracht wird?

Vielen Dank für eure Hilfe,

liebe Grüße

Ramona

        
Bezug
Coulommb-Gesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Mo 02.10.2006
Autor: Event_Horizon

Ich würde sagen, das ist genauso. Aber man kann das ganze ja mathematisch angehen.


Die Ebene sitze in der xy-Ebene, und deine Punktladung hat den Abstand h.

Die Kraft zwischen zwei Punktladungen ist  [mm] $\vec F=\bruch{qQ}{r^2}\bruch{\vec r}{|r|}$ [/mm] (die Konstanten mal weg gelassen)

Jetzt schaut man sich mal ein winziges Stück $dxdy$ der Ebene an.

Wir nehmen eine Ladungsdichte [mm] \rho [/mm] dazu, dann hat das Stück die Ladung [mm] $\rho [/mm] dxdy$

Das Stück dxdy ist an der Position (x;y;0). Somit ist der Abstand zur Punktladung [mm] \wurzel{x^2+y^2+h^2} [/mm]


Macht eine Kraft von  [mm] $F=\bruch{q\rho}{x^2+y^2+h^2}\bruch{\vec r}{|r|}dxdy$ [/mm]

Kümmern wir uns um den vektoriellen Teil: [mm] \bruch{\vec r}{|r|} [/mm] ist ja ein Richtungsvektor. Die Komponente in z-Richtung (die anderen heben sich weg) läßt sich schreiben als [mm] \bruch{h}{\wurzel{x^2+y^2+h^2}} [/mm]

Alles zusammen:

[mm] $F=\bruch{q\rho h}{{(x^2+y^2+h^2)}^{3/2}}dxdy$ [/mm]

DAs Ding müssern wir jetzt über die Fläche integrieren, um die Gesamtkraft zu erhalten:

[mm] $F_{ges}=\integral \integral \bruch{q\rho h}{{(x^2+y^2+h^2)}^{3/2}}dxdy$ [/mm]

Gehen wir zu Polarkoordinaten über:

[mm] $F_{ges}=\integral \integral \bruch{q\rho h}{{(r^2+h^2)}^{3/2}} [/mm] r [mm] d\phi [/mm] dr$

[mm] $F_{ges}=2\pi \integral \bruch{q\rho h}{{(r^2+h^2)}^{3/2}} [/mm] r  dr$

Verzeih, daß ich an dieser Stelle mal den Computer rechnen lasse...

[mm] $F_{ges}=-2\pi q\rho \left[ \bruch{1}{\wurzel{r^2+h^2}} \right]_0^\infty= \bruch{2\pi q\rho}{{h}}$ [/mm]

Demnach gibt es eine 1/h-Abhängigkeit, und demnach auch eine unendlich hohe Kraft bei unendlicher Annäherung.




(Tschuldigung, ich hatte grade spaß...)




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de