Cramer'sche Regel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:05 So 20.12.2009 | Autor: | LariC |
Aufgabe | Sei ein spitzwinkliges Dreieck mit den (positiven) Seiten(längen) a,b,c und den jeweil gegenüberliegneden Winkeln [mm] \alpha,\beta,\gamma [/mm] gegeben, Zeigen Sie durch trigonometrische Betrachtungen, dass
b cos [mm] \gamma [/mm] + c cos [mm] \beta [/mm] = a
c cos [mm] \alpha [/mm] + a cos [mm] \gamma [/mm] = b
a cos [mm] \beta [/mm] + b cos [mm] \alpha [/mm] = c
und dann unter Anwendung der Cramer'schen Regel, dass
[mm] cos\alpha [/mm] = [mm] (b^2+c^2-a^2)/(2bc)
[/mm]
Als Tipp: Bei den trigonometrischen Betrachtungen soll an rechtwinklige Dreiecke gedacht werden. |
Hallo , ich weiß irgendwie nicht richtig wie ich die Aufgabe zu verstehen habe. Ich soll ja zeigen, dass die angegeben Gleichungen für ein spitzwinkliges Dreieck gelten - aber warum dann der Tipp. Und Phytagoras oder so könnte ich ja nur in einem rechtwinklihgen dreick verwenden. Mir ist die Aufgabe irgendwie überhaupt nicht klar.
Was soll ich denn hier wie machen? Und was hat die Cramersche Regel damit zu tun?
|
|
|
|
Hallo LariC,
> Sei ein spitzwinkliges Dreieck mit den (positiven)
> Seiten(längen) a,b,c und den jeweil gegenüberliegneden
> Winkeln [mm]\alpha,\beta,\gamma[/mm] gegeben, Zeigen Sie durch
> trigonometrische Betrachtungen, dass
> b cos [mm]\gamma[/mm] + c cos [mm]\beta[/mm] = a
> c cos [mm]\alpha[/mm] + a cos [mm]\gamma[/mm] = b
> a cos [mm]\beta[/mm] + b cos [mm]\alpha[/mm] = c
>
> und dann unter Anwendung der Cramer'schen Regel, dass
>
> [mm]cos\alpha[/mm] = [mm](b^2+c^2-a^2)/(2bc)[/mm]
>
> Als Tipp: Bei den trigonometrischen Betrachtungen soll an
> rechtwinklige Dreiecke gedacht werden.
Die erste Gleichung bestimmst Du, indem du Dein Dreieck mal vor Dich legst, die Seite a waagerecht vor Dir, und die Höhe [mm] h_a [/mm] einzeichnest. Dann hast Du ja zwei rechtwinklige Dreiecke. Die Seite a wird im Höhenfußpunkt geteilt, und Du kannst mit trigonometrischen Mitteln beide Teile bestimmen.
Das gleiche dann für die anderen Seiten.
Nun hast Du ein Gleichungssystem. Nimm a,b und c als Parameter. Die zu bestimmenden Variablen sind hier [mm] \cos{\alpha}, \cos{\beta} [/mm] und [mm] \cos{\gamma}. [/mm] Wenn Du willst, kannst Du die ja durch gewöhnliche Variablennamen (x,y,z) ersetzen.
Dieses LGS löst Du jetzt mit der Cramerschen Regel nach x auf.
> Hallo , ich weiß irgendwie nicht richtig wie ich die
> Aufgabe zu verstehen habe. Ich soll ja zeigen, dass die
> angegeben Gleichungen für ein spitzwinkliges Dreieck
> gelten - aber warum dann der Tipp. Und Phytagoras oder so
> könnte ich ja nur in einem rechtwinklihgen dreick
> verwenden. Mir ist die Aufgabe irgendwie überhaupt nicht
> klar.
> Was soll ich denn hier wie machen? Und was hat die
> Cramersche Regel damit zu tun?
Klarer?
lg
reverend
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 13:12 So 20.12.2009 | Autor: | LariC |
Ja, auf jeden Fall viel klarer.So macht das ganze viel mehr Sinn.
Mit nach x auflösen, meinst du dann wahrscheinlich x:= (a,b,c) und bei dem ersten Teil:
Meinst du da reicht dann aufstellen der Gleichungen anhand der beiden Teildreicke und dann halt ein Begründunug oder gibt es da auch noch einen rechnerischen Beweis.
Oder soll ich den dann halt mit der Cramerischer Regel zeigen!?
Vielen dank für deine Hilfe...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:10 So 20.12.2009 | Autor: | LariC |
Habs hakiert und fange jetzt einfach mal an die aUFGABE MIT DER vRAMERISHEN rGEL ORDENTLICH ZU RECHNEN ! dANKE
|
|
|
|