www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Cramersche Regel
Cramersche Regel < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cramersche Regel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Di 15.11.2005
Autor: sunshinenight

hallo,

folgendes LGS ist gegeben:

[mm] 2x_{1}+4x_{2}+3x_{3} [/mm] =1
[mm] 3x_{1}-6x_{2}-2x_{3} [/mm] = -2
[mm] -5x_{1}+8x_{2}+2x_{3} [/mm] =4

Man soll die Lösungen berechnen mit der Cramerschen Regel, insofern dies möglich ist.

allgemein steht ja da: Ax=b
und die Cramersche Regel besagt ja: x= [mm] \bruch{det A_{i}}{det A} [/mm]

Die Determinante vom LGS hat den Wert 6, falls ich mich nicht vertan habe.

Leider hab ich keine Ahnung, wie ich mit der Cramerschen Regel arbeiten muss. Besonders die Sache mit den [mm] A_{i}. [/mm] Wäre sehr dankbar, wenn mir jemand diese Aufgabe beispielhaft vorrechnen könnte. Die anderen LGS, die noch zu der Aufgabe gehören, mache ich dann selbst. Mir ist nur das Schema nicht klar, nachdem ich vorgehen muss.

Ich hatte mir bereits ein Beispiel für eine 2x2-Matrix angesehen. Dort wurde die Determinante berechnet und dann die 2. Spalte in der Matrix gegen b ersetzt bzw. beim zweiten Fall die 1.Spalte. Anschließend wurde der Wert der Determinante berechnet und so kamen dann zwei Lösungen x raus.

Wende ich das genauso bei diesem Beispiel hier an? Also ich nehme mir das b her und setze es zunächst für die 1. Spalte ein und berechne den Wert der Determinante und dann mache ich das gleiche noch mit den anderen beiden Spalten?
x sollte ja dann von diesem Format sein, oder?
[mm] x=\vektor{a\\b\\c} [/mm]

mfg sunshinenight

        
Bezug
Cramersche Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 Di 15.11.2005
Autor: Herby

Hallo sunshinenight,



> hallo,
>  
> folgendes LGS ist gegeben:
>  
> [mm]2x_{1}+4x_{2}+3x_{3}[/mm] =1
>  [mm]3x_{1}-6x_{2}-2x_{3}[/mm] = -2
>  [mm]-5x_{1}+8x_{2}+2x_{3}[/mm] =4
>  
> Man soll die Lösungen berechnen mit der Cramerschen Regel,
> insofern dies möglich ist.
>  
> allgemein steht ja da: Ax=b
>  und die Cramersche Regel besagt ja: x= [mm]\bruch{det A_{i}}{det A}[/mm]
>  
> Die Determinante vom LGS hat den Wert 6, falls ich mich
> nicht vertan habe.

Du hast dich nicht vertan [daumenhoch]

> Leider hab ich keine Ahnung, wie ich mit der Cramerschen
> Regel arbeiten muss. Besonders die Sache mit den [mm]A_{i}.[/mm]
> Wäre sehr dankbar, wenn mir jemand diese Aufgabe
> beispielhaft vorrechnen könnte. Die anderen LGS, die noch
> zu der Aufgabe gehören, mache ich dann selbst. Mir ist nur
> das Schema nicht klar, nachdem ich vorgehen muss.
>  
> Ich hatte mir bereits ein Beispiel für eine 2x2-Matrix
> angesehen. Dort wurde die Determinante berechnet und dann
> die 2. Spalte in der Matrix gegen b ersetzt bzw. beim
> zweiten Fall die 1.Spalte. Anschließend wurde der Wert der
> Determinante berechnet und so kamen dann zwei Lösungen x
> raus.
>  
> Wende ich das genauso bei diesem Beispiel hier an? Also ich
> nehme mir das b her und setze es zunächst für die 1. Spalte
> ein und berechne den Wert der Determinante und dann mache
> ich das gleiche noch mit den anderen beiden Spalten?
>  x sollte ja dann von diesem Format sein, oder?
>  [mm]x=\vektor{a\\ b \\c}[/mm]
>  
> mfg sunshinenight

ganz genau so musst das machen.

Das b in deinem Vektor hat nix mit dem Ax=b zu tun!

a wäre dann:

[mm] a=\bruch{ \vmat{ 1 & 4 & 3 \\ -2 & -6 & -2 \\ 4 & 8 & 2}}{6} [/mm]

[mm] a=\bruch{12}{6}=2 [/mm]

die anderen gehen genauso


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de