www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - DGL-Problem
DGL-Problem < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL-Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Do 25.02.2010
Autor: quade521

Hallo,
kann ich die DGL
[mm] y'-y=e^x [/mm] mit dem ansatz lösen
zuerst die Lösung der homogenen dgl
y'-y=0 finden und dann c als c(x) aufffassen usw.. also lösungen kombinieren?

        
Bezug
DGL-Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Do 25.02.2010
Autor: LouisP

Hey Quade,

ja, kannst Du machen. Allerdings gibt es zwei Arten, die Lösung der homogenen DGl aufzuschreiben, und einmal geht es ganz einfach weiter, das andere Mal nicht.

Rechne doch mal vor.
Das Ergebnis kennst Du bestimmt schon, oder?

Grüße
Louis

Bezug
                
Bezug
DGL-Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Do 25.02.2010
Autor: quade521

ne leider nicht,
ich hab gerechnet
y'-y=0 dann durch y
y'/y -1 =0
dann integrieren
ln(y)+c-x=0
das problem ist, dass sich bei mir dann wenn ich in die ursprüngliche DGL einsetzte das c(x) in der ableitung von y`nicht rauskürzt

Bezug
                        
Bezug
DGL-Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Do 25.02.2010
Autor: LouisP

Hi,

> ne leider nicht,
>  ich hab gerechnet
>  y'-y=0 dann durch y
>  y'/y -1 =0
> dann integrieren
> ln(y)+c-x=0
>  das problem ist, dass sich bei mir dann wenn ich in die
> ursprüngliche DGL einsetzte das c(x) in der ableitung von
> y'nicht rauskürzt

Wieso, ist doch ganz gut.
ln(y)+c-x=0
ln(y)=x-c
[mm] y=e^{x-c} [/mm]

Das stimmt doch schonmal, wenn Du die Probe machst.

Wenn Du allerdings jetzt c als c(x) setzt, kriegst Du eben ein Problem mit der Umformung. Besser ist es, noch einen Schritt weiter zu rechnen:

[mm] y=e^{-c}e^x=Ce^x [/mm]

Ab hier geht es gut weiter mit C als C(x).

:-)
Louis

Bezug
                                
Bezug
DGL-Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:26 Fr 26.02.2010
Autor: quade521

hallo,
wenn ich aber die e umformung mache wenn ich noch
ln(y)+c auf der linken seite stehen hab ergibt sich bei mir für y= [mm] (e^x)/c [/mm]

Bezug
                                        
Bezug
DGL-Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 Fr 26.02.2010
Autor: Disap

Guten Tag.

> hallo,
>  wenn ich aber die e umformung mache wenn ich noch
> ln(y)+c auf der linken seite stehen hab ergibt sich bei mir
> für y= [mm](e^x)/c[/mm]  

Zunächst einmal ging es doch um

y' - y = 0 (*)

hier ist y = [mm] e^x [/mm] / c
und damit

y' = [mm] e^x [/mm] / c

Damit ist (*) erfüllt.

Hergeleitet von LouisP war etwas anderes - er ging von

$ln(y)+c-x=0$

aus

Umgestellt ergibt das doch erst einmal

ln(y)= -c+x

Und jetzt wendet man auf beide Seiten die Exp Funktion an, damit erhält man

[mm] e^{ln(y)} [/mm] = [mm] e^{-c+x} [/mm]

bzw.

y = [mm] e^{-c+x} [/mm]

denn [mm] e^{ln(y)} [/mm] ist gerade y

Was du gemacht hast, ist aber

ausgehend von ln(y)+c-x=0

auch richtig, denn du ersetzt einfach die Integrationskonstante c durch eine andere Konstante, [mm] c_2 [/mm]

In dem Fall wäre c = [mm] ln(c_2) [/mm]

Eingesetzt in die Ausgangsgleichung

$ln(y)+c-x= ln(y) + [mm] ln(c_2) [/mm] -x = 0$

Jetzt wendet man ein Logarithmengesetzt an und erhält

$ln(y) + [mm] ln(c_2) [/mm] -x = [mm] ln(y*c_2)-x=0$ [/mm]

umgestellt

[mm] $ln(y*c_2) [/mm] = x$

E-Funktion anwenden

[mm] $e^{ln(y*c_2)} =e^x$ [/mm]

[mm] $y*c_2 [/mm] = [mm] e^x$ [/mm]

Teilen durch [mm] c_2 [/mm]

$y = [mm] e^x [/mm] / [mm] c_2 [/mm] $

Entspricht genau dem, was du gemacht hast.



MfG
Disap

Bezug
                                                
Bezug
DGL-Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Fr 26.02.2010
Autor: quade521

Hallo,
das ist gut, nur mit der form wie es es aufgeschrieben habe kürzt es sich im nächsten schritt nicht, wenn ich y' bestimem und dann in die ursprüngliche DGL
[mm] y'-y=e^x [/mm] einsetzte...das ist doch komisch oder ?

Bezug
                                                        
Bezug
DGL-Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Sa 27.02.2010
Autor: mathestudent25

natürlich kürzt es sich und du bekommst fürc'(x)=1, somit weisst du dass dein c(x)=x ist =)
Bezug
        
Bezug
DGL-Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Do 25.02.2010
Autor: gfm

Ja, Du kannst y(x)=c(x)z(x) setzen, wobei z(x) die homogene löst. Müßte [mm] (x+k)e^x [/mm] ergeben.

LG

gfm



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de