www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL-System
DGL-System < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL-System: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Mi 28.01.2015
Autor: Trikolon

Aufgabe
[mm] y'=\pmat{1 & -1\\ 4 & -3}y [/mm] ist zu lösen.

Hallo,

Eigenwert ist -1 (doppelt)

Eigenvektor ist u= [mm] \vektor{0,5 \\ 1}, [/mm] zugehöriger Hauptvektor ist [mm] v=\vektor{1/4 \\ 0}. [/mm]

Damit [mm] y(x)=c_1e^{-x} \vektor{0,5 \\ 1}+c_2e^{-x} (\vektor{0,5 \\ 1}x+\vektor{1/4 \\ 0}) [/mm]

Ist das soweit ok?

Ich bin ziemlich verwirrt, weil Wolfram Alpha ein ganz anderes Ergebnis ausspuckt.

Wie hängt das zusammen?

        
Bezug
DGL-System: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mi 28.01.2015
Autor: huddel

Hey Trikolon,

hast du mal versucht es einfaach ein zu setzen und aus zu rechnen? bei mir aufm papier passt deine Lösung. Warum dir Wolfram alpha jedoch ein anderes Ergebnis ausspuckt weiß ich jedoch auch nicht genau sagen (soweit ich das sehe ist die Lösung die Wolfram alpha mir ausgespuckt hat auch falsch...)

Bezug
                
Bezug
DGL-System: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Mi 28.01.2015
Autor: Trikolon

Ja bei mir passt das auch. Aber es ist ja irgendwie komisch das bei Wolfram Alpha was anderes raus kommt...

Bezug
                        
Bezug
DGL-System: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mi 28.01.2015
Autor: chrisno


> Damit $ [mm] y(x)=c_1e^{-x} \vektor{0,5 \\ 1}+c_2e^{-x} (\vektor{0,5 \\ 1}x+\vektor{1/4 \\ 0}) [/mm] $

> Im Buch steht als loesung dazu: $ [mm] c_3e^{-x} \vektor{1 \\ 2} +c_4 e^{-x} \vektor{x \\2x-1} [/mm] $


Ich habe die Konstanten mal umbenannt. Ich forme um:
$ [mm] c_3\; e^{-x} \vektor{1 \\ 2} +c_4\; e^{-x}\left( x\vektor{1 \\2} + \vektor{0 \\-1} \right) [/mm] = $
$ [mm] c_3\; e^{-x} \vektor{1 \\ 2} [/mm] +2 [mm] \cdot c_4\; e^{-x}\left( x\vektor{0,5 \\1} + \vektor{0 \\-0,5} + \vektor{-1/4 \\0}+ \vektor{1/4 \\0}\right) [/mm] = $
$ [mm] c_3\; e^{-x} \vektor{1 \\ 2} [/mm] +2 [mm] \cdot c_4\; e^{-x}\left( x\vektor{0,5 \\1} + \vektor{1/4 \\0}\right)+2 \cdot c_4\; e^{-x} \vektor{-0,25 \\-0,5} [/mm] = $
$ [mm] c_3\; e^{-x} \vektor{1 \\ 2} [/mm] -0,5 [mm] \cdot c_4\; e^{-x} \vektor{1 \\2}+2 \cdot c_4\; e^{-x}\left( x\vektor{0,5 \\1} + \vektor{1/4 \\0}\right) [/mm] = $
$ [mm] (c_3-0,5 c_4) e^{-x} \vektor{1 \\ 2}+2 \cdot c_4\; e^{-x}\left( x\vektor{0,5 \\1} + \vektor{1/4 \\0}\right) [/mm] = [mm] \ldots$ [/mm]

Nachtrag: da sind noch Vertipper oder Rechenfehler drin, die ich gerade nicht korrigiere.




Bezug
                                
Bezug
DGL-System: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:12 Mi 28.01.2015
Autor: Trikolon

Super, danke. Ich habe echt schon an mir gezweifelt ;-)

Bezug
                
Bezug
DGL-System: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 Mi 28.01.2015
Autor: chrisno

Bei einer ersten Betrachtung scheinen bei Wolfram Alpha nur die Konstanten anders sortiert zu sein.

Bezug
                        
Bezug
DGL-System: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Mi 28.01.2015
Autor: Trikolon

Im Buch steht als loesung dazu: [mm] c_1e^{-x} \vektor{1 \\ 2} +c_2 e^{-x} \vektor{x \\2x-1} [/mm]
Also auch etwas anderes.

Bezug
        
Bezug
DGL-System: Antwort
Status: (Antwort) fertig Status 
Datum: 07:43 Do 29.01.2015
Autor: fred97


> [mm]y'=\pmat{1 & -1\\ 4 & -3}y[/mm] ist zu lösen.
>  Hallo,
>  
> Eigenwert ist -1 (doppelt)
>  
> Eigenvektor ist u= [mm]\vektor{0,5 \\ 1},[/mm] zugehöriger
> Hauptvektor ist [mm]v=\vektor{1/4 \\ 0}.[/mm]
>  
> Damit [mm]y(x)=c_1e^{-x} \vektor{0,5 \\ 1}+c_2e^{-x} (\vektor{0,5 \\ 1}x+\vektor{1/4 \\ 0})[/mm]
>  
> Ist das soweit ok?
>  
> Ich bin ziemlich verwirrt, weil Wolfram Alpha ein ganz
> anderes Ergebnis ausspuckt.
>  
> Wie hängt das zusammen?


Ich habe Deine Lösung nicht überprüft. Setzen wir

[mm] y_1(x):=e^{-x} \vektor{0,5 \\ 1} [/mm]  und  [mm] y_2(x):=e^{-x} (\vektor{0,5 \\ 1}x+\vektor{1/4 \\ 0}). [/mm]

Ob Du richtig gerechnet hast, kannst Du folgendermaßen überprüfen:

1. Zeige: [mm] y_1 [/mm] und [mm] y_2 [/mm] sind Lösungen des Systems.

2. Zeige: [mm] y_1 [/mm] und [mm] y_2 [/mm] sind linear unabhängig. Zeige also: ais [mm] a*y_1+b*y_2 [/mm] =0 fplgt a=b=0.


Sei weiter L die Menge alle Lösungen des obigen Systems. Dann ist L ein 2-dimensionaler reeller Vektorraum.

Wenn Du richtig gerechnet hast, so ist [mm] \{y_1,y_2 \} [/mm] eine Basis von L.

Wenn Wolfram Alpha etwas anderes ausgespuckt hat, so kann das daran liegen, dass  Wolfram Alpha eine andere Basis von L gefunden hat.

Ich mach Dir ein anderes Beispiel: dazu sei E die x-y-Ebene im [mm] \IR^3. [/mm]

Eine Basis von E ist z.B.:  

     [mm] \{\vektor{1 \\ 0 \\ 0}, \vektor{0 \\ 1 \\ 0}\}. [/mm]

Das bedeutet:

  (1)   E= [mm] \{t*\vektor{1 \\ 0 \\ 0}+s* \vektor{0 \\ 1 \\ 0}: t,s \in \IR\}. [/mm]



Nun ist aber auch

       [mm] \{\vektor{13 \\ -405 \\ 0}, \vektor{17 \\ 183\\ 0}\} [/mm]

eine Basis von E.

Das bedeutet:

      (2)   E= [mm] \{u*\vektor{13 \\ -405\\ 0}+v* \vektor{17 \\ 183 \\ 0}: u,v \in \IR\}. [/mm]

In (1) und (2) haben wir also völlig verschiedene Darstellung ein und derselben Menge E !

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de