www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL
DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:20 Do 25.01.2007
Autor: sven75

Hallo habe schon wieder ein Problem vielleicht könntest du mir nochmal helfen:
Gegeben ist die Differentialgleichung
y´=(2y+1)cotx Anfangsbedingungen [mm] y(\bruch{Pi}{4})=\bruch{1}{2} [/mm]
Allgemeine Lösung:
[mm] \bruch{dy}{dx}*\bruch{1}{2y+1}=cotx [/mm]
[mm] \bruch{1}{2y+1}dy=cotxdx [/mm]
[mm] \integral{\bruch{1}{2y+1}}dy=\integral{cotx}dx [/mm]
ln(2y+1)=lnsinx+c

[mm] e^{ln(2y+1)}=e^{lnsinx+c} [/mm]
2y+1=C*sinx
Die neue Integrationskonstante C entsteht aus [mm] e^{c} [/mm]
2y=C*sinx-1
[mm] y=\bruch{1}{2}C*sinx-\bruch{1}{2} [/mm]
Anfangswerte einsetzten:
[mm] \bruch{1}{2}=y(\bruch{Pi}{4})=\bruch{1}{2}C*sin(\bruch{PI}{4})-\bruch{1}{2} [/mm]
Auflösen nach C:
[mm] C=\bruch{4}{\wurzel{2}} [/mm]
Das wiederum eingesetzt ergibt die Lösung der Anfangswertaufgabe.Was aber nicht das Problem darstellt.Mein Problem ist wenn ich die allgemeine Lösung ableite und in die Ausgangsgleichung einsetze kommt nicht das richtige heraus.Ich habe diese Aufgabe schon mehrfach neu gerechnet komme aber immer auf das selbe Ergebnis.Wo könnte der Fehler liegen?

        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Do 25.01.2007
Autor: Herby

Hallo Sven,

hier deine Antwort:

> Hallo habe schon wieder ein Problem vielleicht könntest du
> mir nochmal helfen:
>  Gegeben ist die Differentialgleichung
>  y´=(2y+1)cotx Anfangsbedingungen
> [mm]y(\bruch{Pi}{4})=\bruch{1}{2}[/mm]
>  Allgemeine Lösung:
>  [mm]\bruch{dy}{dx}*\bruch{1}{2y+1}=cotx[/mm]
>  [mm]\bruch{1}{2y+1}dy=cotxdx[/mm]
>  [mm]\integral{\bruch{1}{2y+1}}dy=\integral{cotx}dx[/mm]
>  ln(2y+1)=lnsinx+c

es fehlt auf der linken Seite der Faktor [mm] \bruch{1}{2} [/mm]
  

lg
Herby

Bezug
                
Bezug
DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Do 25.01.2007
Autor: sven75

Hallo Danke das mit dem Faktor 0,5 hab ich übersehen-schäm...
Aber wenn ich die Gleichung dann überprüfen will komme ich immer noch nicht auf das richtige Ergebnis.
Es steht dann da:
[mm] \bruch{1}{2}ln(2y+1)=lnsinx+c [/mm]
Mittels Exponentialfunktion kommt man auf:
0,5(2y+1)=Csinx
y+0,5=Csinx
y=Csinx-0,5
Probe:
y´=Ccosx
Einsetzen in Ausgangsgleichung:
Ccosx=(2(Csinx-0,5)+1)cotx
[mm] Ccosx=2Csinx*\bruch{cosx}{sinx} [/mm]
Und wieder hab ich das Problem das dann da steht
C=2C
Also ist die Probe wohl falsch oder?Ich werd noch verrückt diese scheinbar leichte Aufgabe hat mich bereits mehrere Stunden gekostet,aber ich will unbedingt wissen wo mein Fehler immer liegt,bitte nochmals um Hilfestellung!

Bezug
                        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 01:33 Fr 26.01.2007
Autor: leduart

Hallo
Jetzt wird der Fehler schlimmer!

> Hallo Danke das mit dem Faktor 0,5 hab ich
> übersehen-schäm...
>  Aber wenn ich die Gleichung dann überprüfen will komme ich
> immer noch nicht auf das richtige Ergebnis.
>  Es steht dann da:
>  [mm]\bruch{1}{2}ln(2y+1)=lnsinx+c[/mm]

richtig

>  Mittels Exponentialfunktion kommt man auf:
>  0,5(2y+1)=Csinx

falsch!!

denn [mm] $\bruch{1}{2}*ln(2y+1)=ln(2y+1)^{\bruch{1}{2}}$ [/mm]

>  y+0,5=Csinx
>  y=Csinx-0,5
>  Probe:

muss ja falsch sein!

Gruss leduart

Bezug
                        
Bezug
DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Fr 26.01.2007
Autor: Herby

Hallo sven,

arbeite auf folgendes hin:

[mm] y=\bruch{1}{2}*C*sin^2(x)-\bruch{1}{2} [/mm]

C=4



Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de