www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 1.Ordnung
DGL 1.Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Fr 22.09.2006
Autor: estefan86

Aufgabe
Gegeben sie die DGL:
(*)   y'= [mm] 3y-2y^2-1 [/mm]
Bestimmen sie mit Hilfe der Substitution
[mm] u(x)=\bruch{1}{y(x)-1} [/mm]

die Lösung von(*) mi der Anfangsbedingung y(0)=2
Gibt es auch eine Lösung von (*)mit y(0)=1

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hallo
das Problem bei dieser Aufgabenstellung liegt daran das mir dort irgendwie der Ansatz fehlt da es sich weder um eine Homogene bzw. Inhomogene Gleichung handelt. Außerdem find ich das [mm] y^2 [/mm] sehr merkwürdig. Ich habe mal folgendes versucht.

1. [mm] u(x)=\bruch{1}{y(x)-1} [/mm]
  u(x)*(y(x)-1) =1
y(x)=  [mm] \bruch{1}{y(x)}+1 [/mm]
[mm] y'(x)=\bruch{1}{u'(x)} [/mm]

2. das dann in die dgl einsetzen
[mm] \bruch{1}{u'}=\bruch{3}{u}-\bruch{2}{u^2}-1 [/mm]
[mm] u'=\bruch{u}{3}-\bruch{u^2}{2}-1 [/mm]
das erscheint aber alles sehr merkwürdig und ich weiss nich ob das so richtig ist hat jemand villeicht ne bessere idee oder einen tipp wie man dort herangehen sollte

        
Bezug
DGL 1.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Fr 22.09.2006
Autor: Zwerglein

Hi, estefan,

> Gegeben sie die DGL:
>  (*)   y'= [mm]3y-2y^2-1[/mm]
>  Bestimmen sie mit Hilfe der Substitution
>  [mm]u(x)=\bruch{1}{y(x)-1}[/mm]
>  
> die Lösung von(*) mi der Anfangsbedingung y(0)=2
>  Gibt es auch eine Lösung von (*)mit y(0)=1
>  
> hallo
>  das Problem bei dieser Aufgabenstellung liegt daran das
> mir dort irgendwie der Ansatz fehlt da es sich weder um
> eine Homogene bzw. Inhomogene Gleichung handelt. Außerdem
> find ich das [mm]y^2[/mm] sehr merkwürdig. Ich habe mal folgendes
> versucht.
>  
> 1. [mm]u(x)=\bruch{1}{y(x)-1}[/mm]
>    u(x)*(y(x)-1) =1
>  y(x)=  [mm]\bruch{1}{y(x)}+1[/mm]
>  [mm]y'(x)=\bruch{1}{u'(x)}[/mm]

Also: Die letzte Zeile stimmt sicher nicht!
Die Ableitung der rechten Seite müsste sein: [mm] -\bruch{u'}{u^{2}} [/mm]

Andererseits wundert mich der ganze Ansatz!
Die Aufgabenstellung weist doch eindeutig auf eine separierbare DGL hin:

[mm] \bruch{dy}{dx} [/mm] = [mm] 3y-2y^{2}-1 [/mm]  
Für [mm] y\not=1 [/mm] und [mm] y\not=0,5 [/mm] kann man umformen:

[mm] \bruch{dy}{3y-2y^{2}-1} [/mm] = dx

Daher:

[mm] \integral{\bruch{dy}{3y-2y^{2}-1}} [/mm] = [mm] \integral{dx} [/mm]
bzw.
[mm] \integral{\bruch{1}{-2y^{2}+3y-1}dy} [/mm] = [mm] \integral{dx} [/mm]

Wahrscheinlich ist es geschickter, noch folgendermaßen umzuformen:

[mm] \integral{\bruch{1}{y^{2}-1,5y+0,5}dy} [/mm] = [mm] -2*\integral{dx} [/mm]

Jetzt machst Du auf der linken Seite die Partialbruchzerlegung und kannst dann leicht integrieren!

mfG!
Zwerglein

Bezug
        
Bezug
DGL 1.Ordnung: mit Ansatz
Status: (Antwort) fertig Status 
Datum: 12:00 Sa 23.09.2006
Autor: Zwerglein

Hi, estefan,

Nachtrag zu meiner ersten Anwort:

Lösung: y = [mm] \bruch{k*e^{x}-0,5}{k*e^{x}-1} [/mm] für y [mm] \not= [/mm] 1, sowie y=1 als konstante Lösung.
Deine AWP haben also folgende spez. Lösungen:
y(0) = 2 => k=1,5 in obiger Gleichung.
y(0)=1  => y=1 als konstante Funktion.

Nun aber zu dem Vorschlag des Aufgabenstellers:

u = [mm] \bruch{1}{y-1} [/mm]  bzw. [mm] y=\bruch{1}{u}+1 [/mm]

Wir hatten ja schon geklärt, dass dann y' = [mm] -\bruch{u'}{u^{2}} [/mm] sein muss.

Eingesetzt in Deine DGL und umgeformt erhalte ich daraus letztlich:

u' - u = 2

Naja: Und das sieht doch schon ganz gut lösbar aus, oder?

mfG!
Zwerglein

Bezug
                
Bezug
DGL 1.Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:51 Sa 23.09.2006
Autor: estefan86

@ Zwerglein
vielen dank für deine Hilfe ich jetzt komme ich schon selbst damit zurecht=)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de