www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 1.Ordnung
DGL 1.Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:20 Di 25.01.2011
Autor: Wieselwiesel

Aufgabe
y(x)' = [mm] \bruch{y(x)}{x}-y(x)^{-1} [/mm]

Hallo!

Ich habe versucht die DGL zu lösen und komme auf folgendes Ergebnis:
[mm] y^2(x) [/mm] = [mm] x^2 [/mm] * C - 2x + D

Das richtige Ergebnis laut TI und Wolfram Alpha ist aber
[mm] y^2(x) [/mm] = [mm] x^2 [/mm] * C + 2x + D

Meine Frage nun, wie kommt hier das Plus zustande?
Ich hab ganz normal zuerst homogen gelöst [mm] y^2 [/mm] mit z substituiert usw. und dann inhomogen gelöst. Kann mir wer helfen? ich hab das beispiel mittlerweile schon min. 5 mal gerechnet und es kommt immer wieder das gleiche raus.

        
Bezug
DGL 1.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Di 25.01.2011
Autor: fred97


> y(x)' = [mm]\bruch{y(x)}{x}-y(x)^{-1}[/mm]
>  Hallo!
>  
> Ich habe versucht die DGL zu lösen und komme auf folgendes
> Ergebnis:
>  [mm]y^2(x)[/mm] = [mm]x^2[/mm] * C - 2x + D
>  
> Das richtige Ergebnis laut TI und Wolfram Alpha ist aber
>  [mm]y^2(x)[/mm] = [mm]x^2[/mm] * C + 2x + D
>  
> Meine Frage nun, wie kommt hier das Plus zustande?


Die Frage ist: wie kommt Dein "Minus" zustande ?

Zeig Deine Rechnungen !


Und woher kommt diese Konstante D ?  Für D [mm] \ne [/mm] 0 ist weder

                       [mm]y^2(x)[/mm] = [mm]x^2[/mm] * C - 2x + D

noch

                       [mm]y^2(x)[/mm] = [mm]x^2[/mm] * C + 2x + D

Lösung.


Ich hab heraus:  [mm] $y^2(x)= Cx^2+2x$ [/mm]

FRED

>  Ich hab ganz normal zuerst homogen gelöst [mm]y^2[/mm] mit z
> substituiert usw. und dann inhomogen gelöst. Kann mir wer
> helfen? ich hab das beispiel mittlerweile schon min. 5 mal
> gerechnet und es kommt immer wieder das gleiche raus.


Bezug
                
Bezug
DGL 1.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:55 Di 25.01.2011
Autor: Wieselwiesel

Also ich hab angefangen:
[mm] y^2 [/mm] = z
dann
z' = 2y*y'
dann
[mm] \bruch{z'}{2 \wurzel{z}} [/mm] = [mm] \bruch{\wurzel{z}}{x} [/mm] - [mm] \bruch{1}{\wurzel{z}} [/mm]
dann [mm] \wurzel{z} [/mm] gekürzt und mit 2 multipliziert
z' = [mm] \bruch{2z}{x} [/mm] - 2
dann die inhomogene gelöst
[mm] \integral {\bruch{1}{z} dz} [/mm] = [mm] \integral {\bruch{2}{x} dx} [/mm]
die ln die rauskommen und die Konstante "e hoch genommen"
z = [mm] x^2*k [/mm]
dann abgeleitet
z' = [mm] x^2*k' [/mm] + 2x*k
eingesetzt gekürzt und dann für k'=0 erhalten das dann integriet und k=C erhalten
Die homogene lautet dann z = [mm] x^2*C [/mm]
Dann die inhomogene:
dafür die homogene in die "grundform" eingesetzt:
z' = 2x*C - 2 <-- da eben das Minus
das dann integriert und zu meiner falschen Lösung gekommen
z (bzw [mm] y^2) [/mm] = [mm] x^{2}C [/mm] - 2x (das D kommt bei mir von der Integration, ich hab gedacht da sollte man auch zur sicherheit noch die Konstante dazuschreiben...)

Bezug
                        
Bezug
DGL 1.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Di 25.01.2011
Autor: fred97


> Also ich hab angefangen:
>  [mm]y^2[/mm] = z
>  dann
> z' = 2y*y'
>  dann
>  [mm]\bruch{z'}{2 \wurzel{z}}[/mm] = [mm]\bruch{\wurzel{z}}{x}[/mm] -
> [mm]\bruch{1}{\wurzel{z}}[/mm]
>  dann [mm]\wurzel{z}[/mm] gekürzt und mit 2 multipliziert
>  z' = [mm]\bruch{2z}{x}[/mm] - 2
>  dann die inhomogene gelöst
>  [mm]\integral {\bruch{1}{z} dz}[/mm] = [mm]\integral {\bruch{2}{x} dx}[/mm]
>  
> die ln die rauskommen und die Konstante "e hoch genommen"
>  z = [mm]x^2*k[/mm]
>  dann abgeleitet
>  z' = [mm]x^2*k'[/mm] + 2x*k
>  eingesetzt gekürzt und dann für k'=0 erhalten das dann
> integriet und k=C erhalten
>  Die homogene lautet dann z = [mm]x^2*C[/mm]
>  Dann die inhomogene:
>  dafür die homogene in die "grundform" eingesetzt:
>  z' = 2x*C - 2 <-- da eben das Minus




Das verstehe wer will ! Für eine spezielle Lösung der inhomogene Gl. machst Du also den Ansatz   z= [mm] Cx^2. [/mm] Wenn ich das differenziere und in die DGL einsetze, erhalte ich

              [mm] C'=-2/x^2 [/mm]

also C=2/x

FRED

>  das dann integriert und zu meiner falschen Lösung
> gekommen
>  z (bzw [mm]y^2)[/mm] = [mm]x^{2}C[/mm] - 2x (das D kommt bei mir von der
> Integration, ich hab gedacht da sollte man auch zur
> sicherheit noch die Konstante dazuschreiben...)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de