www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 1. Ordnung inhomogen AWP
DGL 1. Ordnung inhomogen AWP < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1. Ordnung inhomogen AWP: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:57 Do 07.11.2013
Autor: xcase

Aufgabe
mx'' = K - [mm] rx^{2}', [/mm] r und K konstant. r > 0.

Schreiben Sie diese DGL als eine DGL 1. Ordnung für die Geschwindigkeit x = x' um, und lösen Sie diese mit der Anfangsbedingung v(0) = 0.


Hallo,

ha das mit homogenen Ansatz versucht:
[mm] mv_{h}' [/mm] + [mm] rv_{h}^{2} [/mm] = 0.

=>  [mm] v_{h}(x) [/mm] = [mm] \bruch{m}{rx - c} [/mm] .

Dann den partikulären Ansatz: [mm] v_{p} [/mm] = [mm] \bruch{m}{rx - c(x)}. [/mm]
Eingesetzt in die Gleichung aus er Aufgabenstellung ergibt:
-(r [mm] -c'(x))\bruch{m^{2}}{(rx - c(x))^{2}} [/mm] + [mm] \bruch{rm^{2}}{(rx - c(x))^{2}} [/mm] = K.  
Umgeformt komme ich auf: c'(x) = [mm] \bruch{K}{m^{2}}(rx [/mm] - [mm] c(x))^{2} [/mm] .
Wie geht es jetzt weiter? Ich sehe wieder eine DGL für die 'Konstante'.
Hab das auch aufm Blatt mal ausmultipliziert...aber mit Trennung der Variablen komm ich nicht weit? Also ich bekomm nicht alle c's unter einen Term damit ich integrieren kann ^^
Ist das überhaupt richtig soweit? Weil die homogene Lösung habe ich überprüft und scheint korrekt zu sein.

beste Grüße
Tomislav

        
Bezug
DGL 1. Ordnung inhomogen AWP: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 01:26 Fr 08.11.2013
Autor: leduart

Hallo
diese Antwort ist falsch, sieh die Antwort von Fred außer der Bemerkung t nicht v(x) sondern v(t)
es ist nicht v(x) sondern v(t) und du kannst leicht eine Losung v=A raten, einsetzen und A bestimmen.
Dann noch die Anfangsbedingung einsetzen.
Gruss leduart

Bezug
                
Bezug
DGL 1. Ordnung inhomogen AWP: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:09 Fr 08.11.2013
Autor: xcase

Ausprobieren....hmmmm.
Da fällt mir spontan sowas wie v(t) = [mm] \wurzel{\bruch{K}{r}} [/mm] ein. Das würde sogar die DGL erfüllen...nur soll ich in der 2. Aufgabe die Grenzgeschwindigkeit bestimmen indem ich t -> [mm] \infty [/mm] laufen lassen soll. Das würde bei meiner Lösung allerdings nicht funktionieren.

Gruß
Tomislav


Bezug
                        
Bezug
DGL 1. Ordnung inhomogen AWP: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Fr 08.11.2013
Autor: leduart

Hallo
sorry, mein Beitrag war falsch und Fred hat natürlich recht.
löse die Dgl direkt durch Trennung der Variablen.Also
[mm] dv/(k/m-r/m*v^2)=dt [/mm]
Gruss leduart

Bezug
        
Bezug
DGL 1. Ordnung inhomogen AWP: Antwort
Status: (Antwort) fertig Status 
Datum: 08:25 Fr 08.11.2013
Autor: fred97


> mx'' = K - [mm]rx^{2}',[/mm] r und K konstant. r > 0.
>  
> Schreiben Sie diese DGL als eine DGL 1. Ordnung für die
> Geschwindigkeit x = x' um, und lösen Sie diese mit der
> Anfangsbedingung v(0) = 0.
>  
> Hallo,
>  
> ha das mit homogenen Ansatz versucht:
>  [mm]mv_{h}'[/mm] + [mm]rv_{h}^{2}[/mm] = 0.
>  
> =>  [mm]v_{h}(x)[/mm] = [mm]\bruch{m}{rx - c}[/mm] .

>  
> Dann den partikulären Ansatz: [mm]v_{p}[/mm] = [mm]\bruch{m}{rx - c(x)}.[/mm]
>  
> Eingesetzt in die Gleichung aus er Aufgabenstellung
> ergibt:
>  -(r [mm]-c'(x))\bruch{m^{2}}{(rx - c(x))^{2}}[/mm] +
> [mm]\bruch{rm^{2}}{(rx - c(x))^{2}}[/mm] = K.  
> Umgeformt komme ich auf: c'(x) = [mm]\bruch{K}{m^{2}}(rx[/mm] -
> [mm]c(x))^{2}[/mm] .
>  Wie geht es jetzt weiter? Ich sehe wieder eine DGL für
> die 'Konstante'.
> Hab das auch aufm Blatt mal ausmultipliziert...aber mit
> Trennung der Variablen komm ich nicht weit? Also ich bekomm
> nicht alle c's unter einen Term damit ich integrieren kann
> ^^
>  Ist das überhaupt richtig soweit? Weil die homogene
> Lösung habe ich überprüft und scheint korrekt zu sein.
>  
> beste Grüße
>  Tomislav


2 Kritikpunkte:

1. Du scheinst [mm] $x^{2}'$ [/mm] aufzufassen als [mm] (x')^2 [/mm]

Ob das wirklich so gemeint ist, und Du es nur falsch geschrieben hast, entzieht sich meiner Kenntnis.

2. Die Sache mit

     allg. Lösung= allg. Lösung der homogenen Gleichung +spezielle Lösung der inhomogenen Gleichung

funktioniert nur bei linearen Dglen. Dein Dgl ist nicht linear.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de