www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 1. Ordnung lösen
DGL 1. Ordnung lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1. Ordnung lösen: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:15 Di 27.04.2010
Autor: keksdose

Hoffentlich habe ich alle Regeln beachtet...
Es geht um die DGL:

y'=k(x0-y)

Wie kann ich sie lösen? Mein Lösungsansatz war die Trennung der Veränderlichen und dann die Variation der Konstanten. Anscheinend ist aber zumindest letzteres nicht nötig.
Jedenfalls kriege ich die Aufgabe nicht hin. (AW ist gegeben)

Mir reicht eine grobe Lösungsskizze. Habe auch schon in Büchern und im Internet Hilfe gesucht, aber nichts Brauchbares gefunden. Anscheinend ist die Aufgabe total einfach...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
DGL 1. Ordnung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 27.04.2010
Autor: steppenhahn

Hallo,

sind k und x0 in deiner Darstellung beides Konstanten?

Grüße,
Stefan

Bezug
                
Bezug
DGL 1. Ordnung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Di 27.04.2010
Autor: keksdose

Jap, das sind beides Konstanten.

Bezug
        
Bezug
DGL 1. Ordnung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Di 27.04.2010
Autor: schachuzipus

Hallo keksdose,

> Hoffentlich habe ich alle Regeln beachtet...
>  Es geht um die DGL:
>  
> y'=k(x0-y)
>  
> Wie kann ich sie lösen? Mein Lösungsansatz war die
> Trennung der Veränderlichen [ok] und dann die Variation der
> Konstanten. Anscheinend ist aber zumindest letzteres nicht
> nötig.
>  Jedenfalls kriege ich die Aufgabe nicht hin. (AW ist
> gegeben)
>  
> Mir reicht eine grobe Lösungsskizze. Habe auch schon in
> Büchern und im Internet Hilfe gesucht, aber nichts
> Brauchbares gefunden. Anscheinend ist die Aufgabe total
> einfach...

Jo, es ist [mm] $y'=k\cdot{}(x_0-y)$ [/mm]

[mm] $\Rightarrow -\frac{1}{y-x_0} [/mm] \ [mm] \frac{dy}{dx}=k$ [/mm]

[mm] $\Rightarrow -\frac{1}{y-x_0} [/mm] dy \ = \ k \ dx$

Nun beidseitig integrieren:

[mm] $\Rightarrow -\ln|y-x_0|=kx+c$ [/mm]

Nun löse mal nach y auf ...

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


LG

schachuzipus

Bezug
                
Bezug
DGL 1. Ordnung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Di 27.04.2010
Autor: keksdose

Danke, ich habe mich total in der Aufgabe verirrt, weil ich einen falschen Ansatz hatte. Jetzt ist es easy. Merci!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de