www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - DGL 1. Ordnung lösen
DGL 1. Ordnung lösen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1. Ordnung lösen: Aufgabe mit Ansatz
Status: (Frage) beantwortet Status 
Datum: 23:02 Di 14.06.2005
Autor: wolverine2040

Hi Leute,

Knobel schon seit Ewigkeiten an ner Aufgabe herum, habe auch schon nen Ansatz, aber komme damit leider nicht weiter.

Kann mir da viell. jemand bei helfen?

Ich soll also die allgemeine Lösung berechnen:

[mm] \wurzel{x}y'=1+y² [/mm]

Ansatz war bei mir Trennung der Variablen.

Hatte dann also:

[mm] \bruch{dy}{1+y²}=\bruch{1}{\wurzel{x}}dx [/mm]

Das ganze soll nun einzeln integriert werden.

Nur, wie integriere ich die linke Seite?

Oder ist der Ansatz falsch und doch alles mit Substitution?


        
Bezug
DGL 1. Ordnung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:56 Di 14.06.2005
Autor: kruder77

Ne ne der Ansatz ist gut, handelt sich wie gesagt um das Theorem... (hier nochmal ausführlicher gerechnet)

[mm] \integral {\bruch{1}{1+y²} dy}= \integral {\bruch{1}{\wurzel{x}}}dx [/mm]
[mm] \bruch{1}{tan(y)}=2* \wurzel{x} [/mm]
y(x) = [mm] tan(2*\wurzel{x}+C_{1}) ;C_{1} \in \IR [/mm]


Gruß kruder77

Bezug
                
Bezug
DGL 1. Ordnung lösen: Korrektur zur Stammfunktion
Status: (Antwort) fertig Status 
Datum: 09:07 Mi 15.06.2005
Autor: Roadrunner

Hallo Kruder!


Da hat sich aber ein Fehler eingeschlichen!


[aufgemerkt]   [mm] $\integral_{}^{}{\bruch{1}{1+z^2} \ dz} [/mm] \ = \ [mm] \arctan(z) [/mm] + C$


Die weitere Umformung stimmt dann wieder ...


Gruß vom
Roadrunner


Bezug
                        
Bezug
DGL 1. Ordnung lösen: Yes
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 Mi 15.06.2005
Autor: kruder77

Ja, Du hast Recht - ich war gestern Abend ein wenig verpeilt...

Gruß kruder77

Bezug
                
Bezug
DGL 1. Ordnung lösen: also lösung?
Status: (Frage) beantwortet Status 
Datum: 18:18 Mi 15.06.2005
Autor: wolverine2040

Dann ist das folglich so, dass

arctan y = 2 [mm] \wurzel{x} [/mm] + C

umgeformt

y(x) = [mm] tan(2\wurzel{x}+C) [/mm]

ergitbt?

Bezug
                        
Bezug
DGL 1. Ordnung lösen: Stimmt ...
Status: (Antwort) fertig Status 
Datum: 18:57 Mi 15.06.2005
Autor: Roadrunner

Hallo wolverine!


> Dann ist das folglich so, dass  arctan y = 2 [mm]\wurzel{x}[/mm] + C
> umgeformt   y(x) = [mm]tan(2\wurzel{x}+C)[/mm] ergibt?

[daumenhoch] Jawollo ...


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de