www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 2. Ordnung
DGL 2. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 2. Ordnung: Anfangswertprobleme
Status: (Frage) beantwortet Status 
Datum: 23:05 Mo 27.10.2008
Autor: maureulr

Aufgabe
y"+9y=sin(3x) , y(0)=1 , y'(0)=0

homogene :

t²+9=0

t=+- 3i  --> y0=c1*e^(3i)x + c2*e(-3i)x

inhomogene :

yp=sin(3x)

Ansatz :

yp=a*sin(3x)+b*cos(3x)
y'p= 3acos(3x)-3b*sin(3x)
y"p= -9asin(3x)-9bcos(3x)

einsetzen :

-9asin(3x)-9bcos(3x)+9asin(3x)+9bcos(3x)=sin(3x)

Vergleich k.:

-9a+9a = 1  --> a= ???
-9b+9b = 0  --> b=1

Wie komme ich dort weiter ? Könnte mir freundlicherweise jemand helfen ??? habe ich einen verkehrten ansatz gewählt oder verkehrt abgeleitet ???

Mfg Ulli

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
DGL 2. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Mo 27.10.2008
Autor: Herby

Hallo Ulli,

und recht herzlich [willkommenmr]


Mit dem Ansatz [mm] y_p=\red{x}*(a*\sin(3x)+b*\cos(3x)) [/mm] sollte diese DGL lösbar sein.

Begründung: deine Störfunktion lautet allgemein [mm] y=\sin(\beta*x) [/mm]

Sollte nun [mm] i*\beta [/mm] eine Lösung (wie es bei dir ja der Fall ist) der charakteristischen Gleichung sein, so muss der Ansatz [mm] y_p=.... [/mm] mit x multipliziert werden.


Liebe Grüße
Herby

Bezug
                
Bezug
DGL 2. Ordnung: Ableitung
Status: (Frage) beantwortet Status 
Datum: 10:56 Di 28.10.2008
Autor: maureulr

Aufgabe
Ansatz :

yp=x(a*sin(3x)+b*cos(3x) )

y'p=a*sin(3x)+b*cos(3x) + x*(3a*cos(3x)-3b*sin(3x))

y"p=6a*cos(3x)-6b*sin(3x)+x*(-9a*sin(3x)-9b*cos(3x))

y"p+9yp=sin(3x)

-> 6a*cos(3x)-6b*sin(3x)-9x*(a*sin(3x)+b*cos(3x))+9x*(a*sin(3x)+b*cos(3x)) =1* sin (3x)+0*cos(3x)

kürzen :  

->6a*cos(3x)-6b*sin(3x) = 1*sin(3x)+0*cos(3x)

Koeffizientenvergleich :

6a*cos(3x) = 0*cos(3x)   und       -6b*sin (3x) = 1*sin (3x)

6a = 0  --> a = 0  (für cos(3x)) ;   -6b = 1  --> b=-1/6 (für sin (3x))

yp=-1/6*sin(3x)


y=y0+yp=c1*e^(3i)x + c2*e^(-3i)x - (1/6) * sin (3x)

y(0)=1 --> 1= c1 + c2  --> c1 = 1 - c2

y'(0)=0 --> c1 = c2 + (1/9i)

=> c1 = 1/2 + (1/18)*i  
=> c2 = 1/2 - (1/18)*i

einsetzen in y :

y= [( 1/2 + (1/18)i )*e^(3i)x] + [( 1/2 - (-1/18)i )*e^(-3i)x] - [1/6 * sin (3x)]

Schönen Dank für die schnelle Antwort !!!

Ich habe jetzt mal durchgerechnet und die folgende Lsg. rausbekommen !

Ist diese so richtig ?

Soll man diese weiter auflösen oder kann man die Lsg. stehen lassen !?



Bezug
                        
Bezug
DGL 2. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:05 Di 28.10.2008
Autor: Herby


Hallo,

das schaue ich mir morgen früh an - heute nicht mehr [saumuede]


Liebe Grüße
Herby

Bezug
                                
Bezug
DGL 2. Ordnung: Alles klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:58 Mi 29.10.2008
Autor: maureulr

bin gegen mittag wieder online

Bezug
                        
Bezug
DGL 2. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Mi 29.10.2008
Autor: Herby

Hallo Ulli,


> Ansatz :
>  
> yp=x(a*sin(3x)+b*cos(3x) )
>  
> y'p=a*sin(3x)+b*cos(3x) + x*(3a*cos(3x)-3b*sin(3x))
>  
> y"p=6a*cos(3x)-6b*sin(3x)+x*(-9a*sin(3x)-9b*cos(3x))

[daumenhoch]  sieht gut aus

> [mm] y_p"+9y_p=sin(3x) [/mm]
>  
> ->
> 6a*cos(3x)-6b*sin(3x)-9x*(a*sin(3x)+b*cos(3x))+9x*(a*sin(3x)+b*cos(3x))
> =1* sin (3x)+0*cos(3x)

[ok]

> kürzen :  

eher zusammenfassen ;-)


> ->6a*cos(3x)-6b*sin(3x) = 1*sin(3x)+0*cos(3x)

ja!

> Koeffizientenvergleich :
>  
> 6a*cos(3x) = 0*cos(3x)   und       -6b*sin (3x) = 1*sin
> (3x)
>  
> 6a = 0  --> a = 0  (für cos(3x)) ;   -6b = 1  --> b=-1/6
> (für sin (3x))
>  
> [mm] y_p=-1/6*sin(3x) [/mm]

[daumenhoch] auch ok


>
> y=y0+yp=c1*e^(3i)x + c2*e^(-3i)x - (1/6) * sin (3x)

das ist nicht so gut. Es war [mm] \lambda_{1,2}=\pm3i [/mm]  -- daraus ergibt sich für [mm] y_0=C_1*sin(3x)+C_2*cos(3x) [/mm]


Erläuterung:

wenn [mm] \lambda_{1,2}=\red{\alpha}\pm\green{\beta}*i [/mm] Lösungen der charakteristischen Gleichung sind, dann bilden:

[mm] y_1=e^{\red{\alpha}x}*sin(\green{\beta}x)\quad und\quad y_2=e^{\red{\alpha}x}*cos(\green{\beta}x) [/mm]

eine Fundamentalbasis (kannst du über die Wronski-Determinante nachprüfen), deshalb ist:

[mm] y_0=e^{\red{\alpha}x}*\left[C_1*sin(\green{\beta}x)+C_2*cos(\green{\beta}x)\right] [/mm] eine allgemeine Lösung.

---

bei dir ist:

[mm] \red{\alpha}=0 [/mm] und [mm] \green{\beta}=3 [/mm] -- das ergibt

[mm] y_0=e^{\red{0}x}*\left[C_1*sin(\green{3}x)+C_2*cos(\green{3}x)\right] [/mm]

[mm] y_0=C_1*sin(3x)+C_2*cos(3x) [/mm]

Der Rest ist nur noch stumpfsinniges Einsetzen :-)


Ich erhalte: [mm] y=1*cos(3x)+\bruch{1}{2}*sin(3x)-\bruch{1}{6}*sin(3x) [/mm] also

[mm] y=cos{3x}+\bruch{1}{3}*sin(3x) [/mm]


Liebe Grüße
Herby

Bezug
                                
Bezug
DGL 2. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 Mi 29.10.2008
Autor: maureulr

besten dank für die Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de