www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL Anfangswertproblem
DGL Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:50 Do 03.07.2008
Autor: matthias79

Aufgabe
Lösen sie folgende DGL [mm] y^2*y' [/mm] + [mm] x^2 [/mm] = 1 mit dem Anfangswertproblem y(2) = 1
Hinweis: verwenden soe ohne Begründung die Funktion f(x) = [mm] -x^3 [/mm] + 3x + 8 eine einzige Nullstelle besitzt für [mm] \beta \approx [/mm] 2,48

Hallo,

habe mit der DGL ein problem. Wie packe ich die an. Mir fehlt leider ein Ansatz.
Über einen Tip bzw. Hilfe wäre ich sehr dankbar.

Danke Matthias






        
Bezug
DGL Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Do 03.07.2008
Autor: schachuzipus

Hallo Matthias,

> Lösen sie folgende DGL [mm]y^2*y'[/mm] + [mm]x^2[/mm] = 1 mit dem
> Anfangswertproblem y(2) = 1
>  Hinweis: verwenden soe ohne Begründung die Funktion f(x) =
> [mm]-x^3[/mm] + 3x + 8 eine einzige Nullstelle besitzt für [mm]\beta \approx[/mm]
> 2,48
>  Hallo,
>  
> habe mit der DGL ein problem. Wie packe ich die an. Mir
> fehlt leider ein Ansatz.

Die Dgl ist doch wunderbar trennbar:

Schreibe es etwas um:

[mm] $y^2\cdot{}y'+x^2=1$ [/mm]

[mm] $\gdw y^2\cdot{}\frac{dy}{dx}=1-x^2$ [/mm]

[mm] $\gdw y^2 [/mm] \ [mm] dy=(1-x^2) [/mm] \ dx$

Nun beide Seiten integrieren...

[mm] $\blue{\int}{y^2 \ dy} [/mm] \ = \ [mm] \blue{\int}{(1-x^2) \ dx}$ [/mm]

>  Über einen Tip bzw. Hilfe wäre ich sehr dankbar.
>  
> Danke Matthias
>  

LG

schachuzipus


Bezug
                
Bezug
DGL Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 Do 03.07.2008
Autor: matthias79


> Hallo Matthias,
>  
> > Lösen sie folgende DGL [mm]y^2*y'[/mm] + [mm]x^2[/mm] = 1 mit dem
> > Anfangswertproblem y(2) = 1
>  >  Hinweis: verwenden sie ohne Begründung, dass die Funktion
> f(x) =
> > [mm]-x^3[/mm] + 3x + 8 eine einzige Nullstelle [mm] \beta [/mm] besitzt für [mm]\beta \approx[/mm]
> > 2,48
>  >  Hallo,
>  >  
> > habe mit der DGL ein problem. Wie packe ich die an. Mir
> > fehlt leider ein Ansatz.
>  
> Die Dgl ist doch wunderbar trennbar:
>  
> Schreibe es etwas um:
>  
> [mm]y^2\cdot{}y'+x^2=1[/mm]
>  
> [mm]\gdw y^2\cdot{}\frac{dy}{dx}=1-x^2[/mm]
>  
> [mm]\gdw y^2 \ dy=(1-x^2) \ dx[/mm]
>  
> Nun beide Seiten integrieren...
>  
> [mm]\blue{\int}{y^2 \ dy} \ = \ \blue{\int}{(1-x^2) \ dx}[/mm]
>  
> >  Über einen Tip bzw. Hilfe wäre ich sehr dankbar.

>  >  
> > Danke Matthias
>  >  
>
> LG
>  
> schachuzipus
>  

Hallo schachuzipus,

danke für die schnelle Antwort. Den Ansatz hatte ich auch schon, mich hat dann aber der Hinweis irritiert. Da hab ich den Ansatz wieder verworfen. Wie kann/muss man den Hinweis interpretieren?

grüße matthias

Bezug
                        
Bezug
DGL Anfangswertproblem: Lösung
Status: (Antwort) fertig Status 
Datum: 23:18 Do 03.07.2008
Autor: SorcererBln

Nahgut: Lösen der Integrale ergibt und Einbau der AB ergibt

[mm] $y^3=3x-x^3+3$ [/mm]

also

[mm] $y=(3x-x^3+3)^{1/3}$. [/mm]

Wie sieht nun das maximale Existenzintervall aus? Ist $y$ für jedes x differenzierbar?

Bezug
                                
Bezug
DGL Anfangswertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 Fr 04.07.2008
Autor: matthias79

oh mann klar. also nur x < 2,10 ist die funktion existent

danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de