DGL Lineares Gleichungssystem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
| Status: |
(Frage) beantwortet | | Datum: | 14:26 Di 27.09.2011 | | Autor: | frank85 |
| Aufgabe | | Berechnen Sie die allgemeine Lösungsfunktion [mm] y_{1} [/mm] und [mm] y_{2} [/mm] des homogenen linearen DGL-Systems |
[mm]y'_{1}=y_1 +y_2[/mm]
[mm]y'_{2}=y_1 +y_2[/mm]
Wie fängt man an?
Danke Leute
|
|
| |
|
| Status: |
(Antwort) fertig | | Datum: | 14:30 Di 27.09.2011 | | Autor: | Dath |
Allgemein indem du beiden Glecihungen erstmal "entkoppelst". So gehst du ganz allgemein bei Systemen linearer (ODE) DGL vor.
|
|
|
| |
|
| Status: |
(Frage) beantwortet | | Datum: | 14:54 Di 27.09.2011 | | Autor: | frank85 |
> Allgemein indem du beiden Glecihungen erstmal
> "entkoppelst". So gehst du ganz allgemein bei Systemen
> linearer (ODE) DGL vor.
hm soll heißen?
|
|
|
| |
|
Hallo,
Stelle 2 zu den gegebenen Gleichungen äquivalente Gleichungen auf, wobei in der einen nur [mm] y_{1} [/mm] und ihre Ableitungen vorkommt, in der anderen nur [mm] y_{2} [/mm] und ihre Ableitungen.
Gruß korbinian
|
|
|
|