www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL Substitution
DGL Substitution < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL Substitution: Suche den Fehler
Status: (Frage) beantwortet Status 
Datum: 19:01 Di 14.06.2011
Autor: schwammbob123

Aufgabe
Die Aufgabe lautet ganz einfach wie folgt:
y'=2(2x+y+1)^(-1)

So also ich hab dann einfach mal losgelegt und z=2x+y+1 gesetzt (dass es mit Substutition gelöst werden soll steht drüber). Dann hab ich die Ableitung von z gebildet um y' auch substituieren zu können.
[mm] \Rightarrow [/mm] z' = 2+y' -> y'=z'-2
[mm] \Rightarrow [/mm] z'-2 = 2/z
[mm] \Rightarrow [/mm] z' = 2/z + 2  [mm] \gdw [/mm] z' = (2+2z)/z

dann hab ich die Variablen ja schon getrennt und kann das in die "Formel" einsetzten:

1/2 * [mm] \integral_{a}^{b} [/mm] {z/(1+z) dz}  [mm] \gdw \integral_{a}^{b} [/mm] {1 dx}

[mm] \Rightarrow [/mm] 1/2(z-ln(z+1)) = x + c
[mm] \Rightarrow [/mm] z-ln(z+1) = 2x + c
[mm] \Rightarrow [/mm] z = ln(z+1) + 2x +c

Resubstitution:

[mm] \Rightarrow [/mm] 2x+y+1 = ln(2x+y+1+1) + 2x + c
[mm] \Rightarrow [/mm] y = ln(2x+y+2) + 2x + c

Jetzt hab ich aber keine Chance mehr an das y alleine ranzukommen oder?! Also vermute ich, dass ich vorher irgendwo einen Fehler gemacht habe weil alle anderen Übungsaufgaben sonst ziemlich gut aufgehen. Wäre super nett wenn mir jemand helfen könnte. Danke schonmal im vorraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mfg Lucas

        
Bezug
DGL Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Di 14.06.2011
Autor: Martinius

Hallo,

ich habe als Lösung auch:

$y-ln|y+2x+2|=C-1$

$y-ln|y+2x+2|=C'$


heraus - also eine implizite Lösung.

Möglicherweise könnte man die Lösung mit einem CAS zeichnen.

LG, Martinius

Bezug
        
Bezug
DGL Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Di 14.06.2011
Autor: schachuzipus

Hallo Lucas und herzlich [willkommenmr],


> Die Aufgabe lautet ganz einfach wie folgt:
> y'=2(2x+y+1)^(-1)
>  So also ich hab dann einfach mal losgelegt und z=2x+y+1
> gesetzt (dass es mit Substutition gelöst werden soll steht
> drüber). Dann hab ich die Ableitung von z gebildet um y'
> auch substituieren zu können.
> [mm]\Rightarrow[/mm] z' = 2+y' -> y'=z'-2
>  [mm]\Rightarrow[/mm] z'-2 = 2/z
>  [mm]\Rightarrow[/mm] z' = 2/z + 2  [mm]\gdw[/mm] z' = (2+2z)/z [ok]
>  
> dann hab ich die Variablen ja schon getrennt und kann das
> in die "Formel" einsetzten:
>  
> 1/2 * [mm]\integral_{a}^{b}[/mm] {z/(1+z) dz}  [mm]\red{\gdw}[/mm] [mm]\integral_{a}^{b}[/mm]  {1 dx}

Na, das soll wohl ein [mm]\red{=}[/mm] sein ...

>
> [mm]\Rightarrow[/mm] 1/2(z-ln(z+1)) = x + c [ok]
> [mm]\Rightarrow[/mm] z-ln(z+1) = 2x + 2c
>  [mm]\Rightarrow[/mm] z = ln(z+1) + 2x +2c

[mm]2c[/mm] oder [mm]\tilde c[/mm] - auf jeden Fall nicht c !

>  
> Resubstitution:
>  
> [mm]\Rightarrow[/mm] 2x+y+1 = ln(2x+y+1+1) + 2x + [mm]\tilde c[/mm]
>  [mm]\Rightarrow[/mm] y = ln(2x+y+2) + 2x + c

Nee, hier heben sich doch die 2x weg ...

>  
> Jetzt hab ich aber keine Chance mehr an das y alleine
> ranzukommen oder?! Also vermute ich, dass ich vorher
> irgendwo einen Fehler gemacht habe weil alle anderen
> Übungsaufgaben sonst ziemlich gut aufgehen. Wäre super
> nett wenn mir jemand helfen könnte. Danke schonmal im
> vorraus!

Ein "r" genügt vollkommen!

Ich denke, deine Rechnung ist richtig und auch nachvollziehbar, ich komme auf dieselbe Lösung.

Es ist ja in den seltensten Fällen so, dass man die Lösung explizit angeben kann; hier wird man wohl um die implizite Darstellung nicht herumkommen.

Setzt man Maple auf die DGL an, so spuckt er ganz phantastisch dies aus:

[mm]y(x)=-\text{LambertW}\left(-2Ce^{-2x-2}\right)-2x-2[/mm]



>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Mfg Lucas

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de