DGL Zweikörperproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:34 Do 12.01.2012 | Autor: | Harris |
Hi!
Ich habe das Differentialgleichungssystem
$x''=- [mm] \frac{x}{(x^2+y^2)^\frac{3}{2}},~~~y''=- \frac{y}{(x^2+y^2)^\frac{3}{2}}$ [/mm] gegeben. Hierzu ist die Energie
[mm] $E=\frac{1}{2}((x')^2+(y')^2)- \frac{1}{(x^2+y^2)^\frac{1}{2}}$ [/mm] und das Moment durch $M=xy'-x'y$ gegeben.
Ich soll nun herausfinden, welche Beziehung zwischen $E$ und $M$ erfüllt sein muss, damit $(x,y)$ eine Kreisbahn mit Radius $R>0$ beschreibt.
Hierzu verwende ich Polarkoordinaten [mm] $x=r\cos(\varphi)$ [/mm] und [mm] $y=r\sin(\varphi)$:
[/mm]
Heraus kommt (nach meinen Rechnungen
[mm] $E=\frac{1}{2}(r'^2+r^2\varphi'^2)-\frac{1}{r}$ [/mm] und [mm] $M=r^2\varphi'$
[/mm]
Nun soll $r=R$ konstant sein, so dass herauskommt
[mm] $E=\frac{1}{2}R^2\varphi'^2-\frac{1}{R}=\frac{M^2}{2R^2}-\frac{1}{R}$
[/mm]
Nun meine Fragen:
a) Stimmen die Rechnungen und das Ergebnis soweit, oder will der Aufgabensteller ein anderes Ergebnis?
b) Ist das nicht falschrum? Habe ich hier nicht gezeigt, dass wenn eine Kreisbahn beschrieben wird, dass dann dieser Zusammenhang bestehen muss? Oder sind diese beiden Aussagen äquivalent?
Gruß, Harris
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:40 Do 12.01.2012 | Autor: | leduart |
Hallo
du hast es richtig gemacht, physikalisch zumondest da ja gilt M was ich drehimpuls und nicht Moment nennen würde und E sind konstant, also muss bei r=const auch [mm] \phi'=const [/mm] gelten
und damit sind die aussagen äquivalent.
gruss leduart
|
|
|
|