www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL aus System von DGL
DGL aus System von DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL aus System von DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Di 19.06.2007
Autor: Braunstein

Aufgabe
Wie kann man aus einem System von Differentialgleichungen eine einzelne Differentialgleichung zB 3. Ordnung für x(t) bestimmen?

Hey,
ich bezieh mich auf die o.a. Frage. Kann mir da jemand weiter helfen?

Angabe:
[mm] x''=x^{2}y [/mm]
[mm] y'=x+2y^{2} [/mm]

Info: DGL=Differentialgleichung

Ich weiß, dass ich zB y' integrieren kann. Dann erhalte ich [mm] \bruch{x^{2}}{2}+2\bruch{y^{3}}{3} [/mm] (ev. noch +C). Dies kann ich dann in die erste DGL einsetzen. Aber wie komm ich dann zu einer DGL 3. Ordnung? Einfach x'' nochmals differenzieren? Oder gibt's da einen Haken?

Frage: Wie kann ich die Ordnung eines Systems bestimmen? Ist die Ordnung eines Systems gleich der höchsten Ordnung einer im System vorkommenden DGL?

Freue mich auf eine Antwort.

Gruß, h.

        
Bezug
DGL aus System von DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Di 19.06.2007
Autor: leduart

Hallo Braunstein
hast du dir das Bsp. selbst gemacht, oder ist das ne echte Aufgabe? denn es sieht sehr ungewöhnlich aus!
normalerweise hat man Systeme von dgl. erste Ordnung und kann daraus manchmal (vorallem, wenn sie aus der Physik kommen, eine Dgl. zweiter Ordnung machen.
Was du mit deiner y' Dgl tust ist sehr sinnlos, x und y sind doch fkt von t! nur unbekannte und wenn etwa x=sint wäre, ist das Integral doch nicht 1/2sin^2t! entsprechend dein [mm] y^3! [/mm]
schreib also vielleicht besser nicht in der verkürzten Schriebweise x''= sondern [mm] \bruch{d^2}{dt^2}x(t) [/mm] usw oder wenigstens x(t), x'(t)x''(t) usw.
Deine Dgl. kann ich nicht in eine dritten grades verwandeln.
Ein einfaches Bsp wo es geht ist etwa
x'(t) =y(t)
y'(t) =-x(t)
daraus: x''(t)=-x(t)
        y''(t)=-y(t)
Gruss leduart.



Bezug
                
Bezug
DGL aus System von DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Mi 20.06.2007
Autor: Braunstein

Danke für die Antwort.
Werde mich morgen damit beschäftigen.
Info: Dies ist wirklich eine Aufgabe aus einem Beispielkatalog.

Gruß, h.

Bezug
                
Bezug
DGL aus System von DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:48 So 24.06.2007
Autor: Braunstein

So, vielen Dank.
Jetzt hab ich mir das mal durchgedacht.
Hast mich mit deiner Antwort auf viele Ideen gebracht.
Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de