www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - DGL gelöst mit Laplace und PBZ
DGL gelöst mit Laplace und PBZ < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL gelöst mit Laplace und PBZ: Komplexer Ansatz PBZ
Status: (Frage) beantwortet Status 
Datum: 23:07 Mi 21.03.2012
Autor: summerlove

Aufgabe
F(s) = [mm] \bruch{1}{(s^{2}+4s+5)^{2}} [/mm] + [mm] \bruch{s+3}{s^{2}+4s+5} [/mm]

Umwandlung von Bildfunktion in Originalfunktion

Hallo,

also diese Aufgabe war ursprünglich eine DGL, die mit Hilfe von Laplace gelöst werden sollte, ich habe F(s) schon mal hingeschrieben, weil meine Schwierigkeit woanders besteht.

Normalerweise lösen wir diese Art von Aufgaben mit Partialbruchzerlegung, allerdings geht es bei dieser Aufgabe nicht, es ist ein doppelt komplexer Ansatz, wenn ich PBZ anwende, komme ich allerdings immer auf die ursprüngliche Gleichung zurück.

Faltung dürfen wir nicht benutzen, unser Professor meinte, es würde über einen reellen Ansatz mit den Nullstellen laufen, allerdings wäre das ja hier sehr aufwendig wenn ich mit komplexen Nullstellen rechnen müsste.

Ich wollte fragen, ob es nicht vllt eine andere Möglichkeit gibt, diese Aufgabe zu lösen?


Vielen Dank schon mal!

LG summerlove

        
Bezug
DGL gelöst mit Laplace und PBZ: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Do 22.03.2012
Autor: MathePower

Hallo summerlove,

> F(s) = [mm]\bruch{1}{(s^{2}+4s+5)^{2}}[/mm] +
> [mm]\bruch{s+3}{s^{2}+4s+5}[/mm]
>  
> Umwandlung von Bildfunktion in Originalfunktion
>  Hallo,
>  
> also diese Aufgabe war ursprünglich eine DGL, die mit
> Hilfe von Laplace gelöst werden sollte, ich habe F(s)
> schon mal hingeschrieben, weil meine Schwierigkeit woanders
> besteht.
>  
> Normalerweise lösen wir diese Art von Aufgaben mit
> Partialbruchzerlegung, allerdings geht es bei dieser
> Aufgabe nicht, es ist ein doppelt komplexer Ansatz, wenn
> ich PBZ anwende, komme ich allerdings immer auf die
> ursprüngliche Gleichung zurück.

>


Poste die dazugehörigen bisherigen Rechenschritte.

  

> Faltung dürfen wir nicht benutzen, unser Professor meinte,
> es würde über einen reellen Ansatz mit den Nullstellen
> laufen, allerdings wäre das ja hier sehr aufwendig wenn
> ich mit komplexen Nullstellen rechnen müsste.
>  
> Ich wollte fragen, ob es nicht vllt eine andere
> Möglichkeit gibt, diese Aufgabe zu lösen?
>


Ich denke, das Problem wird der erste Summand sein.

Zerlege diesen wie folgt:

[mm]\bruch{1}{\left(s^{2}+4s+5\right)^{2}}=\left(\bruch{a*s+b}{s^{2}+4s+5}\right)'+\bruch{c}{s^{2}+4s+5}[/mm]


>
> Vielen Dank schon mal!
>  
> LG summerlove


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de