www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL lösen
DGL lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Fr 01.09.2006
Autor: Phecda

hi
ich hab hier eine dgl, die ich lösen muss.
[mm] a*f'(x)^2-b*f(x)=c [/mm]
a, b, c sind beliebige konstanten.
Leider weiß ich keinen ansatz, weil die erste ableitung quadriert wird. kann mir jemand helfen?
würd mich riesieg für die hilfe freuen
danke im vorraus
mfg phecda

        
Bezug
DGL lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Fr 01.09.2006
Autor: Denny22

Hallo,

ich habe mal nachgeschaut, aber leider nichts gefunden. Aber vielleicht hilft es Dir weiter, dass es sich bei Deiner DGL um eine "Implizite DGL 1. Ordnung" handelt. Vielleicht findest Du was im Internet dazu oder jemand anderes weiß mehr.

Ciao

Bezug
        
Bezug
DGL lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Fr 01.09.2006
Autor: Martin243

Hallo,

hierbei handelt es sich um eine "Algebro-Differentialgleichung", die halb so schlimm ist wie sie aussieht.

[mm]a*\left(y'\right)^2 - b*y = c \quad[/mm] für [mm]a,b,c \not= 0[/mm]
Eine Lösung ist auf jeden Fall sofort zu sehen:
[mm]y = -\bruch{c}{b}[/mm]

Ansatz: Auflösen nach [mm]y'[/mm]:
[mm]y' = \wurzel{\bruch{b}{a}*y + \bruch{c}{a}} =: g\left(y\right)[/mm]


Dies ist eine Gleichung mit trennbaren Variablen. Ansatz:
[mm]\bruch{dy}{dx} = \bruch{1}{g^{-1}\left(y\right)}[/mm]

Multiplikation über Kreuz ergibt:
[mm]g^{-1}\left(y\right) dy = dx[/mm]

Also müssen wir nur noch lösen:
[mm]\int g^{-1}\left(y\right) dy = \int dx + C[/mm]

Jetzt nur noch [mm]g\left(y\right)[/mm] einsetzen, Stammfunktionen bilden, fertig! Versuch es mal. Wenn es Probleme gibt, kannst du dich ja wieder melden.


Gruß
Martin

Bezug
                
Bezug
DGL lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Fr 01.09.2006
Autor: Phecda

hi martin vielen dank ich bin schon fast verzweifelt weil das so kompliziert aussah .. top ich wer mir das jetzt genau angugen... :) echt vielen dank
mfg phecda

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de