www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL m. Potenzreihenansatz
DGL m. Potenzreihenansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL m. Potenzreihenansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:21 Mi 21.09.2011
Autor: Reen1205

Aufgabe
Gegeben sei die Differentialgleichung [mm] \left(1-x^2 \right) y''-xy' + 9y=0[/mm].

Alle Polynome vom 3ten Grad ([mm]y(x)=ax^3+bx^2+cx+d[/mm]), welche Lösugnen dieser Differentialgleichung sind.

Ich habe bei dieser Aufgabe ersteinmal die Klammer gelöst und komme auf [mm] y''-x^2y''-xy'+9y=0 [/mm]
Als nächsten Schritt wollte ich die DGL mit den Potenzreihenansätzen lösen. Also habe ich die DGL umgeschrieben in
[mm] \sum_{n=0}^{N} \left(n+1\right){n+2}a_{\left(n+2\right)} - \sum_{n=0}^{N} n*\left(n-1\right)a_n - \sum_{n=1}^{N}n*a_n + \sum_{n=1}^{N} 9 a_n[/mm]

Nun habe ich versucht die Koeffizienten herauszufinden indem ich mir die ganzen Summen bis N=4 anschaue. Also N=0 ist:

[mm] 2a_2 - 0 - 0 + 9a_0 = 0[/mm] folglich ist [mm]a_0=\frac{-2}{9}[/mm]
[mm] N=1: a_1 = \frac{-3}{4}a_3\quad N=2: a_2=\frac{-12}{5}a_4\quad N=3: a_5=0\quad N=4: a_4=\frac{30}{7}a_6\quad [/mm]
Bei den Potenzreihenansätzen die ich bisher gerehcnet habe, viel irgendwann etwas weg oder ich konnte etwas mit was anderem ersetzen. Vielleicht sehe ich auch gerade nicht den richtigen Clou. Vielleicht könnt ihr mich auf den richtigen Weg schubsen.

Gruß

        
Bezug
DGL m. Potenzreihenansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:04 Mi 21.09.2011
Autor: wauwau

setze doch einfach wie in der Aufgabe gegeben das Polynom 3. Grades in die DGL ein und vergleiche dann die Koeffizienten!!!

(Lösung in etwa: [mm] $y=ax^3-\frac{3}{5}ax$) [/mm]

Bezug
                
Bezug
DGL m. Potenzreihenansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:45 Mi 21.09.2011
Autor: Reen1205

Also habe ich [mm]y=ax^3+bx^2+cx+d \quad y'=3ax^2+2bx+c \quad y''=6ax+2b [/mm]

Alles in die DGL eingefügt ergibt sich das zu:(erstmal die KLammer aufgelöst anschließend eingesetzt)
[mm] y''-x^2y''-xy'+9y=0[/mm]
und Eingesetzt
[mm] 6ax+2b-x^2(6ax+2b)-x(3ax^292bx9c)+9(ax^3+bx^2+cx+d)=0[/mm]

Dann alles nach absteigenden Potenzen geordnet:
[mm] (-6ax^3-3ax^3+9ax^3)+(2bx^2-2bx^2+9bx^2)+(6ax-cx+9ax)+(2b+9d)=0[/mm]

Bekomme ich dann hier raus: [mm] a=1;\quad b=0;\quad c=\frac{-6}{8}a:\quad d=0[/mm] Und das "a" könnte ich mir frei wählen weil es für die Gleichung eh keinen Unterschied macht?!

Bezug
                        
Bezug
DGL m. Potenzreihenansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Mi 21.09.2011
Autor: schachuzipus

Hallo Reen1205,


> Also habe ich [mm]y=ax^3+bx^2+cx+d \quad y'=3ax^2+2bx+c \quad y''=6ax+2b[/mm] [ok]
>  
> Alles in die DGL eingefügt ergibt sich das zu:(erstmal die
> KLammer aufgelöst anschließend eingesetzt)
>  [mm]y''-x^2y''-xy'+9y=0[/mm]
>  und Eingesetzt
>  [mm]6ax+2b-x^2(6ax+2b)-x(3ax^292bx9c)+9(ax^3+bx^2+cx+d)=0[/mm]
>  
> Dann alles nach absteigenden Potenzen geordnet:
>  
> [mm](-6ax^3-3ax^3+9ax^3)+(\red{-}2bx^2-2bx^2+9bx^2)+(6ax-cx+9\red{a}x)+(2b+9d)=0[/mm]

Da muss ein "[mm]\red{-}[/mm]" hin und hinten [mm]9\red{c}x[/mm]

>  
> Bekomme ich dann hier raus: [mm]a=1;\quad b=0;\quad c=\frac{-6}{8}a:\quad d=0[/mm] ( [ok])
> Und das "a" könnte ich mir frei wählen weil es für die
> Gleichung eh keinen Unterschied macht?!

Dann musst du das für [mm]a=1[/mm] aber auch bei [mm]c[/mm] entsprechend anpassen

Also [mm]y=ax^3-\frac{3}{4}ax[/mm] mit [mm]a\in\IR[/mm] ...

Gruß

schachuzipus


Bezug
                                
Bezug
DGL m. Potenzreihenansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:24 Mi 21.09.2011
Autor: Reen1205

Dankeschön! Ich und meine Vorzeichenfehler :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de