www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL mit Euler
DGL mit Euler < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL mit Euler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Mo 27.08.2012
Autor: sardelka

Hallo,

ich bekomme in folgender DGL nicht die richtige Antwort.

y'' - 8y' + 15y = [mm] 4e^{3x} [/mm]

Homogene Lsg. stimmt: [mm] y_{h}= c_{1}e^{5x} [/mm] + [mm] c_{2}e^{3x} [/mm]

Bei der partikulären habe ich folgendes:
[mm] y_{p}(x)= ae^{3x} [/mm]
y'_{p}(x)= [mm] 3ae^{3x} [/mm]
y''_{p}(x)= [mm] 9ae^{3x} [/mm]

Einsetzen: [mm] 9ae^{3x} [/mm] - [mm] 24ae^{3x} [/mm] + [mm] 15ae^{3x} [/mm] = [mm] 4e^{3x} [/mm]
Dann ist: 0 = [mm] 4e^{3x} [/mm]  (falsche Aussage)

Wo ist der Fehler? Es muss nämlich [mm] -2xe^{3x} [/mm] rauskommen


Vielen Dank im Voraus
sardelka

        
Bezug
DGL mit Euler: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Mo 27.08.2012
Autor: franzzink

Hallo sardelka,

verwende hier den Ansatz:   [mm] y_{p}(x) [/mm] = [mm] ax*e^{3x} [/mm]

Gruß,
franzzink

Bezug
                
Bezug
DGL mit Euler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Mo 27.08.2012
Autor: sardelka

Ok, und woher weiß ich das?

Z.B. bei y'' - 8y' + 16y = [mm] -72e^{-2x} [/mm] nehme ich ja den Ansatz, den ich oben genannt habe.

Vielen Dank im Voraus


Bezug
                        
Bezug
DGL mit Euler: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Mo 27.08.2012
Autor: MathePower

Hallo sardelka,

> Ok, und woher weiß ich das?
>  


Das weisst Du erst, wenn Du die Lösungen
der homogenen DGL berechnet hast.

Dann weisst Du nämlich welchen Ansatz zu wählen ist.

Ist, wie hier, die rechte Seite der DGL Lösung der homogenen DGL,
so ist der Ansatz gemäß dieser rechten Seite mit x zu multiplizieren,
falls die rechte Seite der DGL nur einfache Lösung der homogenen DGL ist.


> Z.B. bei y'' - 8y' + 16y = [mm]-72e^{-2x}[/mm] nehme ich ja den
> Ansatz, den ich oben genannt habe.

>


Hier ist die rechte Seite der DGL keine Lösung der homogenen DGL.

Daher der Ansatz: [mm]y_{p}\left(x\right)=a*e^{-2x}[/mm]


> Vielen Dank im Voraus
>  


Gruss
MathePower  

Bezug
                                
Bezug
DGL mit Euler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Mo 27.08.2012
Autor: sardelka

Ach so, verstehe.

Und wenn die rechte Seite einer zweifachen Lösung der homogenen DGL entspricht, nehme ich dann [mm] ax^{2}e^{...}? [/mm]

Vielen Dank im Voraus



Bezug
                                        
Bezug
DGL mit Euler: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Mo 27.08.2012
Autor: MathePower

Hallo sardelka,

> Ach so, verstehe.
>
> Und wenn die rechte Seite einer zweifachen Lösung der
> homogenen DGL entspricht, nehme ich dann [mm]ax^{2}e^{...}?[/mm]
>  


Ja, das hast Du richtig erkannt.


> Vielen Dank im Voraus
>  


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de