www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - D und W bei Umkehrfunktionen
D und W bei Umkehrfunktionen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

D und W bei Umkehrfunktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:54 Fr 04.11.2022
Autor: appo13

Aufgabe
Bestimme Definitions- und Wertebereich von f(x) und seiner Umkehrfunktion. Bestimme auch die Umkehrfunktion.
[mm] f(x)=\wurzel{25-4x^{2}} [/mm]

Guten Abend zusammen,
ich habe neulich die Umkehrfunktion von o.g. Funktion f(x) besprochen.
Ich kam zunächst zur Umkehrfunktion [mm] f^-1(x)=0,5\wurzel{-x^{2}+25} [/mm]

Nun wollte ich den Satz benutzen, dass der Definitionsbereich einer Funktion, dem Wertebereich seiner Umkehrfunktion entspricht. (Analog Werte- entspricht Definitionsbereich)

f^-1(x) hatte nun den Definitionsbereich D={-5;5}, welches nach dem Satz oben der Wertebereich von f(x) sein müsste. Stimmt aber nicht, da f(x) nur positive Y-Werte hat, wie mir eine Zeichnung beider Funktionen offenbarte.

Nun ist f(x) aber auch in seinem Definitionsbereich eingeshränkt, dieser ist nämlich D={-2,5;2,5} Ich vermute es hat damit zu tun, dass die Umdrehung des Definitions- und Wertebereichs hier nicht funktioniert. Außerdem ist f(x) ja entweder im Interval [-2,5;0] oder [0,2,5] umkehrbar.

Was übersehe ich?

Herzlichen Dank im Voraus!

        
Bezug
D und W bei Umkehrfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Fr 04.11.2022
Autor: HJKweseleit

Du hast schon alles selbst erkannt.

Da f(x) nicht monoton steigt oder fällt, kommt es vor, dass zu zwei verschiedenen x-Werten der selbe y-Wert herauskommt, z.B. f(2,5)=f(-2,5)=0.
In der Umkehrung müsste nun [mm] f^{-1}(0) [/mm] sowohl 2,5 als auch -2,5 sein, aber nach dem, was eine Funktion ist, ist nur ein Wert erlaubt. Deshalb musst du den Definitionsbereich von f so einschränken, dass kein Element aus dem Wertebereich von f für 2 verschiedene x-Werte genommen werden kann. Am einfachsten geht das hier, weil f(x)=f(-x) ist, indem du für [mm] D_f [/mm] das Intervall [ -2,5 | 0 ] nimmst oder [ 0 | 2,5 ].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de