www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Darstellende Matrix bestimmen
Darstellende Matrix bestimmen < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellende Matrix bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Mo 19.11.2007
Autor: chris2312

Aufgabe
Gegeben ist die lineare Abbildung F: V -> W
[mm] V=W=\IR^3 [/mm]
[mm] \mathcal{A} [/mm] = [mm] \mathcal{B} [/mm] = [mm] \mathcal{K} [/mm]
[mm] F\vektor{x\\y\\z} [/mm] = [mm] \pmat{ x + y \\ y + z \\ x + z } [/mm]
v = [mm] \vektor{2\\1\\0} [/mm]

Man ermittle die darstellende Matrix A=M [mm] \mathcal{A} \mathcal{B} [/mm] (F) mit den angegebenen Basen [mm] \mathcal{A} [/mm] und [mm] \mathcal{B}. [/mm]
[mm] \mathcal{K} [/mm] ist die kanonische Basis von [mm] \IR^3. [/mm]
Weiters ermitteln sie Kern und Bild durch die Angabe einer Basis dieser Vektorräume.

Meine Fragen:
1) Wie ermittle ich die darstellende Matrix?
Die Lösung sollte angeblich lauten:

[mm] \pmat{ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 } [/mm]

2) Wie bestimme ich Kern und Bild?


Vielen Dank!

lg
christoph

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Darstellende Matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Mo 19.11.2007
Autor: schachuzipus

Hallo Chris,

um die Abbildungsmatrix von $F$ zu berechnen, bestimme die Bilder der Basisvektoren von [mm] $\mathcal{A}$ [/mm] unter $F$ und stelle sie als Linearkombination der Basisvektoren dar.

Die entstehenden Koordinaten steckst du als Spalten in die Abbildungsmatix.
Diese Prozedur angewandt auf den i-ten Basisvektor liefert dir die i-te Spalte der Abbildungmatrix


Dh. du hast [mm] $\mathcal{A}=\left\{\vektor{1\\0\\0},\vektor{0\\1\\0},\vektor{0\\0\\1}\right\}$ [/mm]

Dann ist [mm] $F\left(\vektor{1\\0\\0}\right)=\vektor{1\\0\\1}=\red{1}\cdot{}\vektor{1\\0\\0}+\red{0}\cdot{}\vektor{0\\1\\0}+\red{1}\cdot{}\vektor{0\\0\\1}$ [/mm]

Dh. die 1. Spalte der Abbildungsmatrix ist [mm] $\vektor{\red{1}\\\red{0}\\\red{1}}$ [/mm]

Analog erhältst du die 2. und 3. Spalte der Abbildungsmatrix ...


Hier ist das besonders einfach, da du sowohl im Urbild- als auch im Bildraum jeweils die kanonische Basis hast. Da kannst du auch direkt die Bilder der Basisvektoren in die entsprechenden Spalten der Abbildungsmatrix stecken.

Zum Bild:

Es gilt ja, dass die Spalten der Abbildungsmatrix das Bild von $F$ aufspannen.
Wenn du die Abbildungsmatrix [mm] $M_{\mathcal{A}}(F)$ [/mm] ermittelt hast,  kannst du also das  Bild bzw. dessen Dimension bestimmen, indem du den Rang von [mm] $M_{\mathcal{A}}(F)$, [/mm] also [mm] $rg(M_{\mathcal{A}}(F))$ [/mm] ermittelst.

Ihr hattet bestimmt in der VL den Satz: [mm] $rg(M_{\mathcal{A}}(F))=dim(Bild(F))$ [/mm]

Wenn du diese Dimension ermittelt hast, wählst du halt entsprechend viele linear unabhängige Spaltenvektoren von [mm] $M_{\mathcal{A}}(F)$ [/mm] als Basis des Bildes aus.

Den Kern bzw. erst einmal dessen Dimension kannst du dann über den "Kern-Bild-Satz" berechnen:

[mm] $dim(\IR^3)=dim(Bild(F))+dim(Kern(F))$ [/mm]

Explizit berechnen  kannst du den Kern durch Lösen der Gleichung [mm] $M_{\mathcal{A}}(F)\cdot{}\vektor{x_1\\x_2\\x_3}=\vektor{0\\0\\0}$ [/mm]

Im Kern sind ja genau all die Vektoren, die unter $F$ auf [mm] $\vektor{0\\0\\0}$ [/mm] abgebildet werden.


Reicht das erstmal ?  ;-)


LG


schachuzipus

Bezug
                
Bezug
Darstellende Matrix bestimmen: vielen dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 Sa 24.11.2007
Autor: chris2312

hey! vielen dank - das ist perfekt erklärt.
die prüfung ist gut gelaufen.

nochmals danke

lg
christoph

Bezug
                        
Bezug
Darstellende Matrix bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:30 Sa 24.11.2007
Autor: schachuzipus

Hi Christoph,


> hey! vielen dank - das ist perfekt erklärt.
>  die prüfung ist gut gelaufen. [applaus]

super !! Glückwunsch [flowers]

;-)

>  
> nochmals danke
>  
> lg
>  christoph


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de