www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Darstellung
Darstellung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:41 Mo 28.04.2008
Autor: jumape

Aufgabe
Seien V und W zwei Darstellungen einer Liealgebra g.
1. Zeige: Durch die Vorschrift
               [mm] x(v\otimes [/mm] w)= [mm] (xv)\otimes [/mm] w + [mm] v\otimes [/mm] (xw)   [mm] \forall x\in g,v\in [/mm] V, [mm] w\in [/mm] W
               wird [mm] V\otimes [/mm] W zu einer Darstellung von g.

2. Der Homomorphismenraum Hom(V,W) ist eine Darstellung von g durch die Vorschrift
(xf)(v)= x(f(v))-f(xv) [mm] \forall x\in [/mm] g, [mm] v\in [/mm] V, [mm] f\in [/mm] Hom(V,W)

3. Zeige: Die kanonische Abbildung [mm] V*\otimesW* \to [/mm] Hom(V,W) von Vektorräumen ist ein Isomorphismus von Darstellungen.

Wenn ich das richtig verstanden habe muss man erstmal gucken ob es einen Liealgebrenhomomorphismus zwischen g und [mm] End(V\otimes [/mm] W) gibt.

Die lineare Abbildung wäre doch dabei [mm] f(x)=x(v\otimes [/mm] w), richtig?
Dann müsste man überprüfen ob [mm] f(\lambdax+y) [/mm] = [mm] \lambdaf(x)+f(y) [/mm] gilt.
Ist das die richtige lineare ABbildung die ich da überprüfe?


Dann muss man  gucken ob f([x,y])=[f(x),f(y)] und genau da hakt es leider immer noch bei mir. Ist die Lieklammer hier einfach wieder xy-yx?
Wenn ja komme ich so weit:
[mm] [x,y](v\otimes [/mm] w)= [mm] (xy-yx)(v\otimes [/mm] w) = [mm] xy(v\otimes w)-yx(v\otimes [/mm] w)= [mm] xyv\otimes w+v\otimes [/mm] xyw- [mm] yxv\otimes [/mm] w- [mm] v\otimes [/mm] yxw

Ich weiß dass man da mithilfe der Tensorproduktdefinition noch was zusammenfassen kann, so dass man hat:
[mm] (xyv-yxv)\otimes [/mm] w + [mm] v\otimes [/mm] (xyw-yxw)

Aber dann komme ich einfach nicht weiter.

Bei der zweiten verhällt es sich ähnlich die lineare Abbildung kriege ich noch hin aber dann gibt es ein Problem mit der Lieklammer.
[x,y]f(v)=(xy-yx)f(v)=(xy-yx)(f(v))-f((xy-yx)v)=xy(f(v))-yx(f(v))-f(xyv)+f(yxv) und dann komme ich nicht weiter. Steckt da vielleicht einfach ein Trick dahinter?

Bei der dritten das verstehe ich das gar nicht. Hat nicht [mm] V*\otimesW* [/mm] die Dimension 2n und Hom(V,W) die Dimension n?
Oder ist mir da was völlig entgangen?

        
Bezug
Darstellung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Sa 03.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de