www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Darstellung E-Funktion
Darstellung E-Funktion < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellung E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Mi 11.07.2012
Autor: kirschgurke

Aufgabe
Darstellung von z= 3 mal e ( hoch i mal 1/4 pi )in der gaußschen zahlenebene.

Wie genau gehe ich vor. und was ist davon dann Real und Imaginärteil?

Vielen Dank



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Darstellung E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Mi 11.07.2012
Autor: fencheltee


> Darstellung von z= 3 mal e ( hoch i mal 1/4 pi )in der
> gaußschen zahlenebene.
>  Wie genau gehe ich vor. und was ist davon dann Real und
> Imaginärteil?
>  
> Vielen Dank
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

hallo,
du weisst doch sicherlich, dass gilt:
[mm] r*e^{j\phi}=r*(cos\phi+j*sin\phi) [/mm]

was dabei real- und imaginärteil darstellt, macht das j deutlich ;-)
gruß tee


Bezug
                
Bezug
Darstellung E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Mi 11.07.2012
Autor: kirschgurke

Hi,danke!

Ja, die Formel cos180 + i sin 180= -1 kenn ich.
Was mach ich mit dem 1/4 pi`? Als Lösung soll Punkt (2/2) in der Koordinate rauskommen, aber wenn ich mit 1/4 rechne dann kommen da nur sehr krumme Werte raus.

Bezug
                        
Bezug
Darstellung E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mi 11.07.2012
Autor: MathePower

Hallo kirschgurke,

> Hi,danke!
>
> Ja, die Formel cos180 + i sin 180= -1 kenn ich.
>  Was mach ich mit dem 1/4 pi'? Als Lösung soll Punkt (2/2)
> in der Koordinate rauskommen, aber wenn ich mit 1/4 rechne
> dann kommen da nur sehr krumme Werte raus.


[mm]\bruch{\pi}{4}[/mm] ist der Winkel, der gegen den Uhrzeigersinn,
ausgehend von der reellen Achse (x-Achse) , gemessen wurde.


Gruss
MathePower

Bezug
                        
Bezug
Darstellung E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Mi 11.07.2012
Autor: Diophant

Hallo,

> Ja, die Formel cos180 + i sin 180= -1 kenn ich.
> Was mach ich mit dem 1/4 pi'? Als Lösung soll Punkt (2/2)
> in der Koordinate rauskommen, aber wenn ich mit 1/4 rechne
> dann kommen da nur sehr krumme Werte raus.

Die 1/4 sind hier das Argument von z. Also ein Winkel, und zwar ein Winkel im Bogenmaß. Damit rechnet man üblicherweise, wenn man mit kompülexen Zahlen hantiert. Vermutlich hast du deinen TR versehentlich auf Altgrad (Degree) gestellt, dann ist es kein Wunder, dass du krumme Werte erhältst.

Den Winkel x=1/4 sollte man allerdings auch unfallfrei ohne TR vom Bogen- ins Gradmaß umwandeln können. Dann sieht man auch unmittelbar, dass man hier sicherlich überhaupt keinen Taschenrechner benötigt, um Real- und Imaginärteil zu erhalten.

Allerdings ist die von dir angegebene Lösung (2|2) davon unabhängig falsch. Kann es sein, dass das [mm] \left(\bruch{3}{2}\wurzel{2},\bruch{3}{2}\wurzel{2}\right) [/mm] heißen soll?


Gruß, Diophant

Bezug
                                
Bezug
Darstellung E-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Mi 11.07.2012
Autor: kirschgurke

Das wird wohl das Ergebnis sein, ist hier nur etwas unsauber eingezeichnet.

Bekomme das mit dem Taschenrechner auch net hin. Über manuelle Lösungsschritte würde ich mich sehr freuen.

Oder muss ich auf rad stellen und dann: ( e^(cos180*1/4+sin180*1/4) ),
dann hab ich zumindestens 2,11 raus

Bezug
                                        
Bezug
Darstellung E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Mi 11.07.2012
Autor: fencheltee


> Das wird wohl das Ergebnis sein, ist hier nur etwas
> unsauber eingezeichnet.
>  
> Bekomme das mit dem Taschenrechner auch net hin. Über
> manuelle Lösungsschritte würde ich mich sehr freuen.
>  
> Oder muss ich auf rad stellen und dann: (
> e^(cos180*1/4+sin180*1/4) ),
>  dann hab ich zumindestens 2,11 raus

hallo,
wieso e? wieso 180? auf rad müsstest du [mm] cos(\pi [/mm] /4) tippen, bei grad cos(45). und ob dein taschenrechner komplex rechnen kann, kann hier niemand voraussagen...
du solltest dir das kapitel mit den komplexen zahlen aber nochmal zu gemüte führen..

gruß tee


Bezug
                                                
Bezug
Darstellung E-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:47 Mi 11.07.2012
Autor: kirschgurke

Danke. Das ich net gut in Mathe bin weiß ich schon :)

Bezug
                                                        
Bezug
Darstellung E-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:56 Mi 11.07.2012
Autor: leduart

Hallo
in mathe gut muss man für die komplexen Zahlen nicht sein!
wissen bzw lernen muss man dass [mm] 2\pi [/mm] im Bogenmass 360° im Gradmass ist, also [mm] \pi [/mm] und 180* dasselbe sind , und deshalb [mm] \pi/4 [/mm]  45°entspricht.
ausserdem sollman wissen, dass in der Darstellung [mm] z=r*e^{i*\phi} \phi [/mm] der Winkel zur x-Achse (gegen den Uhrzeigersinn) ist und r die Länge des Pfeils, der z darstellt.
du gehst also auf der 45° linie = Winkelhalbierenden 3 Einheiten.
dann kannst du auch direkt die 2 Teile sehen.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de