www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Darstellung von Zahlen
Darstellung von Zahlen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellung von Zahlen: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:19 Do 09.11.2006
Autor: Planlos

Aufgabe
Die Zahl 4 lässt sich auf fünf verschiedene Weisen als Summe von Einsen und Zweien darstellen:
1+1+1+1=1+1+2=1+2+1=2+1+1=2+2.
Man gebe eine Rekursionsformel für die Anzahl solcher Darstellungen durch Einsen und Zweien für eine beliebige positive Zahl an und berechne sie im Fall n=12.

Es geht mir nur um die Rekursionsformel
Sei [mm] M(a_{n}) [/mm] die Anzahl der Möglichkeiten die Zahl [mm] a_{n} [/mm] darzustellen.
Diese setzen sich ja nun [mm] M(a_{n-1})kombiniert [/mm] mit der 1  und [mm] M(a_{n-2}) [/mm] kombiniert mir der 2 zusammen.
So bin ich auf die Rekrusionsformel [mm] M(a_{n})=M(a_{n-1})+M(a_{n-2}) [/mm] gekommen.
Was mich jetzt interssiert ist: Wie kann man zeigen, dass sich [mm] M(a_{n}) [/mm] aus der Anzahl der Möglichkeiten der beiden Vorgänger zusammensetzt??


        
Bezug
Darstellung von Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 Do 09.11.2006
Autor: Planlos

Hat sich erledigt. Habs.

Bezug
                
Bezug
Darstellung von Zahlen: wie lautet denn die Lösung?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Fr 10.11.2006
Autor: Bastiane

Hallo Planlos!

Auch wenn sich für dich die Aufgabe nun gelöst hat, kann es sein, dass sich jemand anders auch für die Lösung interessiert. Kannst du sie nicht hier rein stellen?

Viele Grüße
Bastiane
[cap]

Bezug
                        
Bezug
Darstellung von Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:58 Di 14.11.2006
Autor: Planlos

Klar das kann ich machen. Sorry war seit ein paar Tagen nicht meht on.
Sagen wir die Anzahl der  Möglichkeiten eine Zahl n mit Einsen und Zweien darzustellen ist [mm] D_{n}. [/mm]
Die Darstellungen lassen sich unterteilen. Sei [mm] M_{1} [/mm] die Menge, die alle Darstellungen von n mit einsen am Ende enthält.
[mm] M_{2} [/mm] enthält alle mit zweien am Ende.
Beide Mengen zusammen enthalten alle Darstellungen.
Jedes Element aus [mm] M_{1} [/mm] wird nun um die Einsen am Ende gekürzt, und man hat alle Darstellungen von n-1.
Jedes Element aus [mm] M_{2} [/mm] wird nun um die 2 am Ende gekürzt und man hat alle Darstellungen von n-2.  
Füge  ich nun jedem Element der beiden Mengen wieder hinzu, was ich vorher weggenommen habe, enthalten beide Mengen zusammen wieder [mm] D_{n} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de