www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Darstellungsform
Darstellungsform < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellungsform: Allgemeine Frage
Status: (Frage) beantwortet Status 
Datum: 15:17 Di 05.02.2008
Autor: Gaspy

Aufgabe
Für welche komplexen Zahlen z = x + jy gilt Re(z³)=0?

Habe nichtmal einen Ansatz, bislang dachte ich, bei Re(z)=0 wäre der
Realteil 0, also z = 0 + jy und damit eine rein imaginäre Zahl.
Die Lösung sieht etwa so aus: x³-3xy²
Selbst wenn ich das zweite Binom anwende
(x + jy)³ = x³ + 3x²(jy) + 3x(jy)² + (jy)³ komme ich nicht auf die Lösung.

Bringt es etwas wenn ich die Gleichung so schreibe?
x + jy = [mm] \wurzel[3]{0} [/mm]

Bin für jeden Tip dankbar, und ich habe diese Frage nur hier gestellt



        
Bezug
Darstellungsform: Hinweis
Status: (Antwort) fertig Status 
Datum: 15:22 Di 05.02.2008
Autor: Roadrunner

Hallo Gaspy!


> Selbst wenn ich das zweite Binom anwende (x + jy)³ = x³ + 3x²(jy) + 3x(jy)² + (jy)³
> komme ich nicht auf die Lösung.

Mach' mit diesem Ansatz mal weiter. Multiplizere die einzelnen Potenzen von $i_$ aus und sortiere.

Es gilt doch: [mm] $i^2 [/mm] \ = \ -1$ sowie [mm] $i^3 [/mm] \ = \ -i$ .


Gruß vom
Roadrunner


Bezug
                
Bezug
Darstellungsform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Di 05.02.2008
Autor: abakus

Einfaches ist es meiner Meinung nach, die Zahl [mm] z^3 [/mm] in der Form [mm] z^3=r(\cos\phi [/mm] + i [mm] \sin\phi) [/mm] darzustellen. Da der Realteil Null sein soll, entspricht das einer der beiden Formen
[mm] z^3=r* [/mm] i [mm] *\sin\ [/mm] 90° bzw.  [mm] z^3=r* [/mm] i [mm] *\sin\ [/mm] 270°.

Das Argument von z selbst kann  damit 30°, 150°, 270°   oder 90°, 210° , 330° sein.

Bezug
        
Bezug
Darstellungsform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 Di 05.02.2008
Autor: Zneques

Hallo,

ich finde den anderen Ansatz sogar noch besser.
Aus [mm] Re(z^3)=0 [/mm] folgt [mm] z^3=a*i\in i*\IR [/mm]
also [mm] z=\wurzel[3]{a*i}=\wurzel[3]{i}*\wurzel[3]{a}, [/mm] wobei [mm] \wurzel[3]{a}\in\IR [/mm]

Ciao.

Bezug
        
Bezug
Darstellungsform: Alternative
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:40 Di 05.02.2008
Autor: Roadrunner

Hallo Gaspy!


Du kannst auch alternativ die Exponentialdarstellung in Verbindung mit der []Moivre-Formel verwenden:

[mm] $$z^3 [/mm] \ = \ [mm] \left(r*e^{\varphi*i} \ \right)^3 [/mm] \ = \ [mm] r^3*e^{3\varphi*i} [/mm] \ = \ [mm] r^3*\left[\cos(3\varphi)+i*\sin(3\varphi)\right]$$ [/mm]

Damit beträgt der Realteil [mm] $Re(z^3) [/mm] \ = \ [mm] r^3*\cos(3\varphi)$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
Darstellungsform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Di 05.02.2008
Autor: Gaspy

Vielen Dank für die schnellen Antworten :)
Dann war mein Ansatz ja doch nicht so falsch,
wenn ich x³-3xy² benutze, dann wäre der Realteil 0 bei x=0 und
y= [mm] \pm [/mm] (X/ [mm] (\wurzel{3})) [/mm]

und bei $ [mm] z^3 [/mm] \ = \ [mm] \left(r\cdot{}e^{\varphi\cdot{}i} \ \right)^3 [/mm] \ = \ [mm] r^3\cdot{}e^{3\varphi\cdot{}i} [/mm] \ = \ [mm] r^3\cdot{}\left[\cos(3\varphi)+i\cdot{}\sin(3\varphi)\right] [/mm] $

wenn r bzw [mm] cos(3\varphi) [/mm] 0 wird

Nochmals vielen Dank an alle

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de