www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Das Innere einer Menge
Das Innere einer Menge < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Das Innere einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Fr 25.04.2008
Autor: Irmchen

Hallo alle zusammen!

Ich habe hier einen Satz, dessen Beweis ich nicht 100% ig verstehe! Eigentlich habe ich nur ein ungeklärte Frage diesbezüglich.

SATZ :

Sei [mm] A \subseteq X [/mm]. Dann ist [mm] \overset{\circ}{A} [/mm] die größte offene Telmenge von X, die in A enthalten ist.

Beweis :

1.   Zeige, dass  [mm] \overset{\circ}{A} [/mm]  offen in X ist.

Sei [mm] x [mm] \in[/mm]  [mm] \overset{\circ}{A} [/mm] , d.h. A ist Umgebung von x.
Dann gibt es eine offene Teilmenge B von X mit [mm] x \in B \subseteq A [/mm].
Wir zeigen, dass [mm] B \subseteq \overset{\circ}{A} [/mm] :

Ist [mm] y \in B [/mm] , so ist [mm] y \in B \subseteq A [/mm], d.h A ist Umgebung von y und somit ist [mm] y \in \overset{\circ}{A} [/mm] .

2. Zeige, dass A die größte offene Menge ist

Sei B eine offene Teilmenge von X mit [mm] B \subseteq A [/mm].
Zeige, dass [mm] B \subseteq \overset{\circ}{A} [/mm] :

Sei [mm] x \in B [/mm]. Dann ist [mm] x \in B \subseteq A [/mm], also ist A eine Umgebung von x, deswegen ist [mm] x \in \overset{\circ}{A} [/mm].


Frage: Ich sehe leider nicht, dass im Beweisteil b gezeigt wurde, dass das Innere von A die größte offene Telmenge ist. Warum ist das so?


Viele Grüße
Irmchen



        
Bezug
Das Innere einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Fr 25.04.2008
Autor: Marcel

Hallo,

> Hallo alle zusammen!

  

> Ich habe hier einen Satz, dessen Beweis ich nicht 100% ig verstehe!
> Eigentlich habe ich nur ein ungeklärte Frage
> diesbezüglich.
>  
> SATZ :
>  
> Sei [mm]A \subseteq X [/mm]. Dann ist [mm]\overset{\circ}{A}[/mm] die größte
> offene Telmenge von X, die in A enthalten ist.
>  
> Beweis :
>  
> 1. Zeige, dass  [mm]\overset{\circ}{A}[/mm]  offen in X ist.
>  
> Sei [mm]x [mm]\in[/mm]  [mm]\overset{\circ}{A}[/mm] , d.h. A ist Umgebung von x.
>  Dann gibt es eine offene Teilmenge B von X mit [mm]x \in B \subseteq A [/mm].
> Wir zeigen, dass [mm]B \subseteq \overset{\circ}{A}[/mm] :

> Ist [mm]y \in B[/mm] , so ist [mm]y \in B \subseteq A [/mm], d.h A ist
> Umgebung von y und somit ist [mm]y \in \overset{\circ}{A}[/mm] .

> 2. Zeige, dass A die größte offene Menge ist

> Sei B eine offene Teilmenge von X mit [mm]B \subseteq A [/mm].
> Zeige, dass [mm]B \subseteq \overset{\circ}{A}[/mm] :

> Sei [mm]x \in B [/mm]. Dann ist [mm]x \in B \subseteq A [/mm], also ist A
> eine Umgebung von x, deswegen ist [mm]x \in \overset{\circ}{A} [/mm].


> Frage: Ich sehe leider nicht, dass im Beweisteil b gezeigt wurde, dass
> das Innere von A die größte offene Telmenge ist. Warum ist das so?

im ersten Beweisteil wurde doch gezeigt, dass [mm] $\overset{\circ}{A}$ [/mm] überhaupt erstmal eine in $X$ offene Menge ist.

Wenn [mm] $\overset{\circ}{A}$ [/mm] nun die größte offene Menge, die in $A$ enthalten ist, sein sollte, so heißt das doch, dass eine jede offene Teilmenge $O [mm] \subseteq [/mm] A$ auch $O [mm] \subseteq \overset{\circ}{A}$ [/mm] erfüllen muss (andernfalls würde man [mm] $A':=\overset{\circ}{A} \cup [/mm] O$ bilden und hätte dann mit $A'$ eine größere offene Teilmenge von $A$ gefunden).

(Das klingt auch eigentlich ganz logisch, vielleicht, wenn Du es Dir mal sorum überlegst:
Wäre [mm] $\overset{\circ}{A}$ [/mm] nicht die größte offene Teilmenge von $A$, so gäbe es eine offene Teilmenge $A'$ von $A$, so dass diese "größer" als [mm] $\overset{\circ}{A}$ [/mm] wäre. Das letzte heißt mengentheoretisch:
So, dass dann [mm] $\overset{\circ}{A} \subseteq [/mm] A'$ wäre.)

So ist die obige Aussage zu verstehen: Man sagt, wenn $A,B [mm] \subseteq [/mm] X$:
$B$ sei größer als $A$, wenn $A [mm] \subseteq [/mm] B$ gilt.

Übrigens läßt sich das ganze auch (obwohl der Beweis genauso aussieht) so aufschreiben, dass man sagt, dass man die folgende Mengengleichheit zeigt:

[mm] $\overset{\circ}{A}= \bigcup_{O \subseteq A \mbox{ und } O \mbox{ offen}} [/mm] O$

Das heißt, [mm] $\overset{\circ}{A}$ [/mm] ist die Vereinigung über alle offenen Teilmengen von $A$. Und dann ist die Aussage oben klar (weil die Vereinigung über beliebig vielen offenen Mengen stets wieder offen ist).

Gruß,
Marcel

Bezug
                
Bezug
Das Innere einer Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Fr 25.04.2008
Autor: Irmchen

Hallo Marcel!

Vielen vielen Dank!
Jetzt hab ich das verstanden!

Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de