www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Das Minimalpoly. einer nxn-M.
Das Minimalpoly. einer nxn-M. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Das Minimalpoly. einer nxn-M.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Do 09.05.2013
Autor: Aguero

Aufgabe
Das Minimalpolynom einer beliebigen n x n - Matrix A kan man bestimmen, indem man
(i) alle potenzen [mm] A^{2}, [/mm] ... , [mm] A^{n} [/mm] berechnet,
(ii) dann alle polynome p= [mm] a_{n}X^{n} [/mm] + ... + [mm] a_{1}X [/mm] + [mm] a_{0} [/mm] vom Grad [mm] \le [/mm] n mit p(A)=0 bestimmt (Die gleichung P(A)=0 ergibt ein Gleichungssystem aus [mm] n^{2} [/mm] Gleichungen für [mm] a_{0}, [/mm] ..., [mm] a_{n} [/mm] , welches man systematisch mit gaußalgorithmus löst!
(iii) und dann ermittelt, welches dieser Polynome normiert vom kleinstem Grad ist.

>>>Wenden sie diese systematische Methode auf die Matrix A= [mm] \pmat{ 4 & -2 & 1 \\ 4 & -2 & 2 \\ 4 & -4 & 4 } [/mm] an.

(i)
als erstes berechne ich die ersten Matrizen
A= [mm] \pmat{ 4 & -2 & 1 \\ 4 & -2 & 2 \\ 4 & -4 & 4 } [/mm]
[mm] A^{2}= \pmat{ 12 & -8 & 4 \\ 16 & -12 & 8 \\ 16 & -16 & 12 } [/mm]
[mm] A^{3}= \pmat{ 32 & -24 & 12 \\ 48 & -40 & 24 \\ 48 & -48 & 32 } [/mm]
[mm] A^{4}= \pmat{ 80 & -64 & 32 \\ 128 & -112 & 64 \\ 128 & -128 & 80 } [/mm]

es fällt mir nur auf, dass manche Zahlen sag ich mal "parallel" zueinander wachsen, aber sollte mir da etwas spezielles auffallen?
und wie soll ich da an [mm] A^{n} [/mm] herankommen?

und wie sollte ich danach weiter vorgehen?
ich denke mal, wenn ich den ersten Teil nicht gemacht habe, dann kann ich mit dem 2tem nicht fortfahren..

danke

        
Bezug
Das Minimalpoly. einer nxn-M.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Do 09.05.2013
Autor: Schachtel5

hallo,
n ist hier =3, ist hier ja eine 3x3 Matrix, das Minimalpolynom kann deshalb nur höchstens 3.Grades sein.
(Ich finde diese Aufagbe übringens blödsinnig, das Minimalpolynom zu berechnen geht viel einfacher und das man groß was daraus mitnehmen kann zweifel ich auch dran.) Aber da kannst du ja nichts für, ich frage mich nur, wieso sowas auf den Übungszettel kommt...
Mfg


Bezug
                
Bezug
Das Minimalpoly. einer nxn-M.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Do 09.05.2013
Autor: Aguero

wenn ich es wüsste.... :)

wie würdest du es denn deiner Meinung nach lösen`?

kannst du es auch lösen, indem du nach meinen Vorschriften handelst?

Bezug
                        
Bezug
Das Minimalpoly. einer nxn-M.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Do 09.05.2013
Autor: Schachtel5

ich würde das charakteristische Polynom von A berechnen, [mm] det(x*E_3-A)=-(x-2)^3 [/mm] (ist auch etwas Rechnerei, ich habs eben mit einem Rechner ausrechnen lassen) und dann schauen, ob A eingesetzt in p(x)=x-2 Null ist, oder in [mm] p(x)^2=(x-2)^2 [/mm] oder in [mm] (x-2)^3 [/mm] , und die kleinste Potenz, für die P(A)=0 ist, ist dein Minimalpolynom

ist auch etwas rechnen. Aber da kommt man nicht drumherum. Ich könnte es vll auch mit dem Algorithmus, aber hab gerade keine Zeit größere Rechnungen zu machen.

Bezug
                        
Bezug
Das Minimalpoly. einer nxn-M.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Do 09.05.2013
Autor: fred97

Die Potenzen [mm] A^2 [/mm] und [mm] A^3 [/mm] hast Du berechnet.

Dann nimm Dir Das LGS

  [mm] a_3A^3+a_2A^2+a_1A+a_0E=0 [/mm]

vor.

Das sieht schlimmer aus , als es ist. Schreib die Gleichungen mal hin, dann wirst Du sehen, dass es harmlos ist.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de