www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Das bestimmte Integral
Das bestimmte Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Das bestimmte Integral: Flächen zwischen zwei Kurven
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:55 Mo 15.05.2006
Autor: JacoHB

Aufgabe
Wie groß ist die Fläche zwischen der Geraden mit der Gleichung 4x-3y+7=0 und dem Graphen der Funktion f mit [mm] f(x)=\begin{cases} x^2, & \mbox{für } x \mbox{"kleiner gleich"1} \\ (x-2)^2, & \mbox{für } x \mbox{"größer als"1} \end{cases} [/mm]   ?  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

Die Lösung lautet 18!
Ich würde gerne einen ausführlichen Rechenschritt, der zu der Lösung führt haben.

Gruß: Jaco

        
Bezug
Das bestimmte Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 Di 16.05.2006
Autor: leduart

Hallo Jacob
Hast du mal die Forenregeln gelesen? Eigene Lösungsansätze und Ideen und so? Wir machen nicht HA für Schüler sondern helfen bei Fragen!
Hast du schon ne Zeichnung der 2 Parabeln gemacht? Hast du dann die Schnittpunkte bestimmt?
Eigentlich sind das schon 2 wichtige Schritte, die zur Lösung führen
Schilder uns, wo du nicht weiter kommst und wir helfen wenn möglich.
Gruss leduart

Bezug
                
Bezug
Das bestimmte Integral: "Meine Schilderung"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:30 Di 16.05.2006
Autor: JacoHB

Aufgabe
Wie groß ist die Fläche zwischen der Geraden mit der Gleichung 4x-3y+7=0 und dem Graphen der Funktion f mit [mm] f(x)=\begin{cases} x^2, & \mbox{für } x \mbox{"kleiner gleich"1} \\ (x-2)^2, & \mbox{für } x \mbox{"größer als"1} \end{cases} [/mm]   ?  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

Die Lösung lautet 18!
Ich würde gerne einen ausführlichen Rechenschritt, der zu der Lösung führt haben.

Gruß: Jaco> Hallo Jacob

>  Hast du mal die Forenregeln gelesen? Eigene Lösungsansätze
> und Ideen und so? Wir machen nicht HA für Schüler sondern
> helfen bei Fragen!
>  Hast du schon ne Zeichnung der 2 Parabeln gemacht? Hast du
> dann die Schnittpunkte bestimmt?
> Eigentlich sind das schon 2 wichtige Schritte, die zur
> Lösung führen
>  Schilder uns, wo du nicht weiter kommst und wir helfen
> wenn möglich.
>  Gruss leduart

Meine Schilderung für den Ansatz der Aufgabe:
Die Gerade 4x-3y+7=0 nach f(x) aufgelöst ergibt f(x) = [mm] \bruch{4}{3}x+ \bruch{7}{3}. [/mm]
Jetzt habe ich eine Gerade und ein abschnittsweise monotoner Graph, ich muss als nächstes die Schnittstelle(n) der beiden Funktionen im Intervall [a;b] berechnen, dazu muss ich die Gerade mit dem abschnittsweise monotonen Graph "gleichsetzen", ich weiß nicht wie ich folgende Gleichung nach x auflösen soll [mm] \bruch{4}{3}x+ \bruch{7}{3}=\begin{cases} x^2, & \mbox{für } x \mbox{"kleiner gleich"1} \\ (x-2)^2, & \mbox{für } x \mbox{"größer als"1} \end{cases}. [/mm] Wenn ich die beiden Funktionen "gleichsetzen" und nach x auflösen könnte, würde ich mit der Festlegung der Integrationsintervall(e) beginen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de