Def. Zähldichte < Stochastik < Hochschule < Mathe < Vorhilfe
|
Hi,
Ich habe das Gefühl, dass zumindest im 2. Satz ein Fehler enthalten ist, bin mir aber gerade nicht so sicher:
Satz 1: Sei [mm] \Omega [/mm] ein diskreter Grundraum. Die Funktion [mm] p^X(x)=P(X=x)=P(\{\omega \in \Omega|X(\omega)=x\}) [/mm] ist eine Zähldichte auf dem Bildraum [mm] P(\Omega)
[/mm]
Laut meines Wissens ist eine Zähldichte eine Funktion, die ein Element aus [mm] \Omega [/mm] nimmt und diesem Element eine Wahrscheinlichkeit zuordnet. Es gilt [mm] p(\omega)=P(\{\omega\}), [/mm] wenn p die Zähldichte und P das Wahrscheinlichkeitsmaß ist.
Das heißt anders formuliert: [mm] p^X(x) [/mm] nimmt ein Element aus [mm] X(\Omega) [/mm] und weißt diesem eine Wahrscheinlichkeit zu, auch wenn im Endeffekt es mehrere Element aus [mm] \Omega [/mm] geben kann, die [mm] X(\omega)=x [/mm] erfüllen.
Soweit korrekt?
Satz 2: Das zur Zähldichte [mm] p^X [/mm] gehörende Wahrscheinlichkeitsmaß [mm] P^X [/mm] ist gegeben durch [mm] P^X(B)=P(X\in B)=P(\{\omega \in \Omega| X(\omega) \in B\}) [/mm] für alle B [mm] \subset \Omega.
[/mm]
Hierbei ist meiner Meinung nach ein Fehler: [mm] X(\omega) [/mm] gibt mir doch Elemente aus [mm] \IR [/mm] zurück, d.h. B [mm] \subset \IR [/mm] müsste doch gelten. Dann würde die Definition auch mehr Sinn machen, denn dann würde [mm] P^X(B) [/mm] die Wahrscheinlichkeit angeben, dass die ZVe mehrere Werte annehmen darf.
Ich habe mir das an einem Beispiel klar gemacht:
[mm] P^X(B)=P^X(\{1,2,3\})=P(X=1)+P(X=2)+P(X=3), [/mm] da man [mm] \{1,2,3\} [/mm] in 3 disjunkte Teilmengen [mm] \{1\},\{2\} [/mm] und [mm] \{3\} [/mm] zerlegen kann und wir uns in einem diskreten Wahrscheinlichkeitsraum befinden.
Das soweit auch korrekt?
Gruß
Pille
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Mo 21.03.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:56 Mo 21.03.2011 | Autor: | gfm |
> Hi,
>
> Ich habe das Gefühl, dass zumindest im 2. Satz ein Fehler
> enthalten ist, bin mir aber gerade nicht so sicher:
> Satz 1: Sei [mm]\Omega[/mm] ein diskreter Grundraum. Die Funktion
> [mm]p^X(x)=P(X=x)=P(\{\omega \in \Omega|X(\omega)=x\})[/mm] ist eine
> Zähldichte auf dem Bildraum [mm]P(\Omega)[/mm]
> Laut meines Wissens ist eine Zähldichte eine Funktion,
> die ein Element aus [mm]\Omega[/mm] nimmt und diesem Element eine
> Wahrscheinlichkeit zuordnet. Es gilt
> [mm]p(\omega)=P(\{\omega\}),[/mm] wenn p die Zähldichte und P das
> Wahrscheinlichkeitsmaß ist.
> Das heißt anders formuliert: [mm]p^X(x)[/mm] nimmt ein Element aus
> [mm]X(\Omega)[/mm] und weißt diesem eine Wahrscheinlichkeit zu,
> auch wenn im Endeffekt es mehrere Element aus [mm]\Omega[/mm] geben
> kann, die [mm]X(\omega)=x[/mm] erfüllen.
> Soweit korrekt?
>
> Satz 2: Das zur Zähldichte [mm]p^X[/mm] gehörende
> Wahrscheinlichkeitsmaß [mm]P^X[/mm] ist gegeben durch [mm]P^X(B)=P(X\in B)=P(\{\omega \in \Omega| X(\omega) \in B\})[/mm]
> für alle B [mm]\subset \Omega.[/mm]
> Hierbei ist meiner Meinung
> nach ein Fehler: [mm]X(\omega)[/mm] gibt mir doch Elemente aus [mm]\IR[/mm]
> zurück, d.h. B [mm]\subset \IR[/mm] müsste doch gelten. Dann
> würde die Definition auch mehr Sinn machen, denn dann
> würde [mm]P^X(B)[/mm] die Wahrscheinlichkeit angeben, dass die ZVe
> mehrere Werte annehmen darf.
> Ich habe mir das an einem Beispiel klar gemacht:
> [mm]P^X(B)=P^X(\{1,2,3\})=P(X=1)+P(X=2)+P(X=3),[/mm] da man
> [mm]\{1,2,3\}[/mm] in 3 disjunkte Teilmengen [mm]\{1\},\{2\}[/mm] und [mm]\{3\}[/mm]
> zerlegen kann und wir uns in einem diskreten
> Wahrscheinlichkeitsraum befinden.
> Das soweit auch korrekt?
>
> Gruß
> Pille
Ein W-Raum [mm] (\Omega,\mathcal{A},P) [/mm] heißt diskret, wenn [mm] \Omega [/mm] abzählbar ist und [mm] \mathcal{A}=2^\Omega [/mm] gilt. Es gilt dann
[mm] P(A)=\summe_{\omega\in A}P(\{\omega\})
[/mm]
[mm] p_\omega:=p(\omega):=P(\{\omega\}) [/mm] ist dabei die Dichte gegen das Zählmaß n (n(A):=|A|) auf [mm] (\Omega,\mathcal{A}):
[/mm]
[mm] P(A)=\integral_{A}p(\omega)dn(\omega)\equiv\summe_{\omega\in A}p(\omega)
[/mm]
Wenn der Grundraum nicht diskret ist, dafür aber eine ZV X auf ihm, dann gibt es ein abzählbares sicheres Ereignis im Bild-W-Raum. Oben Gesagtes gilt dann für den induzierten Bild-W-Raum.
LG
gfm
|
|
|
|