www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Def. der Differenzierbarkeit
Def. der Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Def. der Differenzierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:39 Di 16.01.2007
Autor: dauwer

Aufgabe
Prüfen Sie mit der Definition von Differenzierbarkeit, ob die Funktionen $$ (1)~ f(x) = cos(x),~(2)~f(x)=ln(x)$$ differenzierbar sind. Stellen Sie dazu den Differenzquotienten [mm] $$\bruch{ \Delta f}{ \Delta x}$$ [/mm] in der Form $$a+O( [mm] \Delta [/mm] x)$$ dar. Hierzu ist in (1) die Verwendung des Additionstheorems hilfreich, in (2) hilft die Darstellung $$x+ [mm] \Delta [/mm] x = x(1+ [mm] \bruch{ \Delta x}{x})$$ [/mm] sowie anschließend in beiden Fällen die passenden Potenzreihen.  

Ich habe diese Aufgabe zu bearbeiten, weiss allerdings überhaupt nicht wie ich da dran gehen soll. Vielleicht kann einer von euch mir einen Ansatz zur Lösung geben.

Danke im Voraus!
dauwer

        
Bezug
Def. der Differenzierbarkeit: Diffbarkeit v. cosx
Status: (Antwort) fertig Status 
Datum: 12:05 Mi 17.01.2007
Autor: angela.h.b.


> Prüfen Sie mit der Definition von Differenzierbarkeit, ob
> die Funktionen [mm](1)~ f(x) = cos(x),~(2)~f(x)=ln(x)[/mm]
> differenzierbar sind. Stellen Sie dazu den
> Differenzquotienten [mm]\bruch{ \Delta f}{ \Delta x}[/mm] in der
> Form [mm]a+O( \Delta x)[/mm] dar. Hierzu ist in (1) die Verwendung
> des Additionstheorems hilfreich, in (2) hilft die
> Darstellung [mm]x+ \Delta x = x(1+ \bruch{ \Delta x}{x})[/mm] sowie
> anschließend in beiden Fällen die passenden Potenzreihen.

Hallo,

nachdem sich nun mehr als einen Tag niemand gemeldet hat, will ich mich doch mal ganz vorsichtig vorwagen, obgleich "groß o von irgendwas" mir stets Furcht einflößt.

Zum Cosinus
Ich glaube, Du sollst das so machen:

Existiert für alle x [mm] \limes_{h\rightarrow 0}\bruch{cos(x+h)-cos(x)}{(x+h)-x}= \limes_{h\rightarrow 0}\bruch{cos(x+h)-cos(x)}{h} [/mm] ?

Es ist  [mm] \limes_{h\rightarrow 0}\bruch{cos(x+h)-cos(x)}{h}= \limes_{h\rightarrow 0}\bruch{-2sin\bruch{2x+h}{2}sin\bruch{h}{2}}{h} [/mm]
    
        (Mit den Additionstheoremen)

[mm] =-\limes_{h\rightarrow 0}sin\bruch{2x+h}{2}\limes_{h\rightarrow 0}\bruch{2sin\bruch{h}{2}}{h} [/mm]

[mm] =-\limes_{h\rightarrow 0}sin\bruch{2x+h}{2}\limes_{h\rightarrow 0}\bruch{sin\bruch{h}{2}}{\bruch{h}{2}} [/mm]

Der erste Faktor ist einfach aufgrund der Stetigkeit der Sinusfunktion,
und den zweiten Faktor sollst du nun wohl mit der Potenzreihe für [mm] sin\bruch{h}{2} [/mm] und Restgliedabschätzung lösen.

Gruß v. Angela

Bezug
        
Bezug
Def. der Differenzierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Fr 19.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de