www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Definitheit
Definitheit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Fr 16.07.2010
Autor: kappen

Aufgabe
Bestimmen Sie alle Werte von t€R, für die A: [mm] \pmat{ 1+t & 2 & 0 \\ 2&4+t&1\\0&1&0 } [/mm] positiv oder negativ definitv ist.

Hi :)

Habe zuerst versucht das über die Eigenwerte zu machen, aber die sind ja irgendwie ein schlechter Scherz: http://www2.wolframalpha.com/input/?i={{1%2Bt,2,0},{2,4%2Bt,1},{0,1,0}}+eigenvalue

Dann über Hurwitz, für positiv definit müssen die Hauptminoren alle positiv sein:
[mm] D_1=1+t>0 [/mm] für t>-1
[mm] D_2=4+5t+t^2-4>0 [/mm] für t>0 oder t<-5
[mm] D_3=-1-t>0 [/mm] für t<-1
Das schließt sich doch schonmal alles hier aus. Bedeutet das, dass es definitiv kein t für eine positiv definite Matrix gibt, oder müsste ich noch andere Verfahren anwenden?

Für die Überprüfung auf negativ definit muss [mm] D_1 [/mm] negativ sein und dann das Vorzeichen alternieren..

Also [mm] D_1=t<-1 [/mm]
[mm] D_2=4+5t+t^2-4>0 [/mm] für t>0 oder t<-5
[mm] D_3=t>-1 [/mm]

Also auch widersprüchlich..

Was ist da los ? ;)

Danke & viele Grüße

        
Bezug
Definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Fr 16.07.2010
Autor: Gonozal_IX

Hiho,

> Dann über Hurwitz, für positiv definit müssen die
> Hauptminoren alle positiv sein:

[ok]

>  [mm]D_1=1+t>0[/mm] für t>-1
>  [mm]D_2=4+5t+t^2-4>0[/mm] für t>0 oder t<-5
>  [mm]D_3=-1-t>0[/mm] für t<-1

[ok]

>  Das schließt sich doch schonmal alles hier aus. Bedeutet
> das, dass es definitiv kein t für eine positiv definite
> Matrix gibt, oder müsste ich noch andere Verfahren
> anwenden?

[ok]

>  
> Für die Überprüfung auf negativ definit muss [mm]D_1[/mm] negativ
> sein und dann das Vorzeichen alternieren..

[ok]

> Also [mm]D_1=t<-1[/mm]
>  [mm]D_2=4+5t+t^2-4>0[/mm] für t>0 oder t<-5
>  [mm]D_3=t>-1[/mm]

[ok]

Es reichen dir also jeweils [mm] D_1 [/mm] und [mm] D_3 [/mm] für den Widerspruch.
Aber es passt alles so :-)

MFG,
Gono.

Bezug
                
Bezug
Definitheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Fr 16.07.2010
Autor: kappen

supi :) Danke

aber wie dämlich ist dann die Aufgabe bitte? Das war ne Klausuraufgabe, wenn man für beide Fälle nix raus bekommt, geht man doch davon aus sich verrechnet zu haben..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de