www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Definition
Definition < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition: was bedeutet sie?
Status: (Frage) beantwortet Status 
Datum: 15:14 Sa 06.11.2004
Autor: Bastiane

Hallo!
Habe mal wieder eine etwas seltsame Definition unseres Profs:
[mm] f_{+} [/mm] = [mm] max\{f,0\}:\Omega \to [0,\infty] [/mm]
[mm] f_{-} [/mm] = [mm] max\{-f,0\}:\Omega \to [0,\infty] [/mm]

Ich hoffe, ich habe es nicht falsch abgschrieben, aber so verstehe ich es nicht.
was geht denn jetzt von [mm] \Omega \to [0,\infty]? [/mm] Das f oder das [mm] max\{f,0\}? [/mm]

Und: kann man sich das irgendwie vorstellen, um es sich besser zu merken?

Viele Grüße
Bastiane
[cap]


        
Bezug
Definition: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Sa 06.11.2004
Autor: Marc

Hallo Bastiane!

> Hallo!
>  Habe mal wieder eine etwas seltsame Definition unseres
> Profs:
>  [mm]f_{+}[/mm] = [mm]max\{f,0\}:\Omega \to [0,\infty] [/mm]
>  [mm]f_{-}[/mm] =
> [mm]max\{-f,0\}:\Omega \to [0,\infty] [/mm]

Das ist so zu lesen:
[mm] $f_{+}:\Omega \mapsto [0,\infty]$ [/mm]
$x [mm] \to \max\{f(x),0\}$ [/mm]
  

> Ich hoffe, ich habe es nicht falsch abgschrieben, aber so
> verstehe ich es nicht.
>  was geht denn jetzt von [mm]\Omega \to [0,\infty]?[/mm] Das f oder
> das [mm]max\{f,0\}? [/mm]

$f_+$ und [mm] $\max\{f,0\}$ [/mm] sind ja "dasselbe".
Aber es werden Elemente aus [mm] $\Omega$ [/mm] abgebildet auf [mm] $\IR^+_0$ [/mm]
  

> Und: kann man sich das irgendwie vorstellen, um es sich
> besser zu merken?

Ja, die Definition ist total simpel.
Sie bedeutet: $f_+$ soll von einer Funktion f der Teil sein, der oberhalb der x-Achse liegt, und $f_-$ ist der Teil, der unterhalb liegt, allerdings ist dieser gespiegelt an der x-Achse.

Das interessante ist nun folgendes:
Sowohl $f_+$ als auch $f_-$ nehmen nur nicht-negative Werte an und es gilt:
$f=f_+-f_-$

Viele Grüße,
Marc

Bezug
        
Bezug
Definition: Antwort
Status: (Antwort) fehlerhaft Status 
Datum: 17:12 Sa 06.11.2004
Autor: JannisCel

Servus Bastiane,

stell Dir irgendeine beliebige Funktion vor die schon die x-Achse ein paar mal schneiden sollte.

Den Kurvenverlauf unterhalb der Spiegelachse spiegelst Du an der x-Achse. Den Kurvenverlauf oberhalb der Spiegelachse belässt Du. Das heißt beim nachmalen des Kurvenverlaufs unterschreitest Du nicht die x-Achse. Das ist [mm] f_{+}. [/mm]
Bei [mm] f_{-} [/mm] spiegelst Du alles oberhalb der Abzisse und der Rest lässt Du. Hier überschreitest Du beim nachmalen nicht die x-Achse.



Bezug
                
Bezug
Definition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Sa 06.11.2004
Autor: Bastiane

Hallo JannisCel!
Danke auch für deine Antwort, aber bist du sicher, dass das so richtig ist?

> Den Kurvenverlauf unterhalb der Spiegelachse spiegelst Du
> an der x-Achse. Den Kurvenverlauf oberhalb der Spiegelachse
> belässt Du. Das heißt beim nachmalen des Kurvenverlaufs
> unterschreitest Du nicht die x-Achse. Das ist [mm]f_{+}. [/mm]

Ich nehme doch eigentlich das Maximum von f(x) und 0, und da für jede negative Funktion 0 größer ist als diese Zahl, wäre [mm] f_{+} [/mm] doch dann 0, oder? Wenn ich den Teil unterhalb der Achse spiegele, bekomme ich ja Werte >0 raus.

Viele Grüße
Bastiane
[cap]


Bezug
                        
Bezug
Definition: Du hast Recht
Status: (Antwort) fertig Status 
Datum: 20:33 Sa 06.11.2004
Autor: Stefan

Liebe Christiane!

Ja, deine Bedenken beim Lesen dieser Antwort waren berechtigt. Orientiere dich lieber an Marc Antwort, denn die ist richtig. :-)

Liebe Grüße
Stefan

Bezug
                                
Bezug
Definition: Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:40 Sa 06.11.2004
Autor: Bastiane

Hallo Stefan!
Danke für die Zustimmung, die andere Antwort hatte mich leicht verwirrt.
Viele Grüße
Bastiane

Bezug
                        
Bezug
Definition: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 So 07.11.2004
Autor: JannisCel

Oh oh, Du hast völlig recht.

Bezug
        
Bezug
Definition: Definition des Integrals
Status: (Frage) beantwortet Status 
Datum: 21:01 Sa 06.11.2004
Autor: Bastiane

Hallo nochmal!
Jetzt haben wir noch zwei Definitionen des Integrals mit [mm] f_{+} [/mm] und [mm] f_{-} [/mm] aufgeschrieben:
Sei f messbar.
(i) f ist integrierbar [mm] :\gdw \integral {f_{+} d m}<\infty [/mm] und [mm] \integral {f_{-} d m}<\infty [/mm]
(ii) [mm] \integral{f d m} [/mm] existiert [mm] :\gdw \integral {f_{+}d m}<\infty [/mm] oder [mm] \integral {f_{-}d m}<\infty [/mm]
(Eigentlich sollte es "mü" heißen (statt m), oder wie heißt der Buchstabe? Jedenfalls habe ich ihn hier nicht gefunden...)

So, jetzt meine Frage:
Zuerst habe ich gedacht, (i) und (ii) würden sich widersprechen, aber jetzt habe ich festgestellt, dass ja auch auf der linken Seite etwas anderes steht. Aber was ist denn der Unterschied zwischen "f ist integrierbar" und "das Integral existiert"? Und folgt das eine aus dem anderen?

Viele Grüße
Bastiane
[breakdance]



Bezug
                
Bezug
Definition: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Sa 06.11.2004
Autor: Stefan

Liebe Christiane!

Die erste Eigenschaft bedeutet, dass das Lebesgue-Integral existiert und endlich ist, sprich also, dass

[mm] $\int [/mm] f_+ [mm] d\mu [/mm] - [mm] \int [/mm] f_- [mm] d\mu$ [/mm]

definiert ist (in [mm] $\overline{\IR} [/mm] = [mm] \IR \cup \{-\infty,+ \infty\}$, [/mm] was immer der Fall ist, wenn nicht beide Integrale [mm] $+\infty$ [/mm] sind) und endlich ist.

In diesem Fall müssen also

[mm] $\int [/mm] f_+ d [mm] \mu$ [/mm]    und   [mm] $\int [/mm] f_- [mm] d\mu$ [/mm]

endlich sein!

Die zweite Eigenschaft ist die Quasi-Integrierbarkeit.

Das Lebesgue-Integral existiert dann, sprich wie oben:

[mm] $\int [/mm] f_+ [mm] d\mu [/mm] - [mm] \int [/mm] f_- [mm] d\mu$ [/mm]

ist definiert (in [mm] $\overline{\IR} [/mm] = [mm] \IR \cup \{-\infty,+ \infty\}$, [/mm] was immer der Fall ist, wenn nicht beide Integrale [mm] $+\infty$ [/mm] sind), aber es kann durchaus sein,

dass

1) [mm] $\int [/mm] f_+ [mm] d\mu \in \IR$ [/mm] und  [mm] $\int [/mm] f_- [mm] d\mu [/mm] = + [mm] \infty$, [/mm]
2) [mm] $\int [/mm] f_+ [mm] d\mu [/mm]  = + [mm] \infty$ [/mm] und  [mm] $\int [/mm] f_- [mm] d\mu \in \IR$. [/mm]

Im ersten Fall existiert [mm] $\int [/mm] f [mm] d\mu$ [/mm] und ist gleich $- [mm] \infty$, [/mm] im zweiten Fall existiert [mm] $\inr [/mm] f [mm] d\mu$ [/mm]  und ist gleich [mm] $+\infty$, [/mm] also in beiden Fällen nicht endlich.

Liebe Grüße
Stefan


Bezug
                        
Bezug
Definition: richtig verstanden?
Status: (Frage) beantwortet Status 
Datum: 22:19 Sa 06.11.2004
Autor: Bastiane

Hallo Stefan!
  

> Die erste Eigenschaft bedeutet, dass das Lebesgue-Integral
> existiert und endlich ist, sprich also, dass

Heißt das, dass das Lebesgue-Integral auch existieren kann und unendlich ist, ja? Und die Funktion heißt dann trotzdem integrierbar!?
  

> Das Lebesgue-Integral existiert dann, sprich wie oben:
>  
> [mm]\int f_+ d\mu + \int f_- d\mu[/mm]

Das muss doch "-" heißen, oder???

> ist definiert (in [mm]\overline{\IR} = \IR \cup \{-\infty,+ \infty\}[/mm],
> was immer der Fall ist, wenn nicht beide Integrale [mm]+\infty[/mm]
> sind), aber es kann durchaus sein, dass
>
> 1) [mm]\int f_+ d\mu \in \IR[/mm] und  [mm]\int f_- d\mu = + \infty[/mm],
>  
> 2) [mm]\int f_+ d\mu = + \infty[/mm] und  [mm]\int f_- d\mu \in \IR[/mm].
>  
> Im ersten Fall existiert [mm]\int f d\mu[/mm] und ist gleich [mm]- \infty[/mm],
> im zweiten Fall existiert [mm]\inr f d\mu[/mm]  und ist gleich
> [mm]+\infty[/mm], also in beiden Fällen nicht endlich.

Ja, diese zwei Fälle verstehe ich.
Aber wenn man jetzt mal von diesen beiden Definitionen absieht, was ist dann der Unterschied zwischen "integrierbar" und "das Integral existiert"? Kann es existieren und unendlich sein, aber dann ist es nicht integrierbar, oder wie?

Viele Grüße
Christiane
[haee]


Bezug
                                
Bezug
Definition: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Sa 06.11.2004
Autor: Stefan

Liebe Christiane!

>  Heißt das, dass das Lebesgue-Integral auch existieren kann
> und unendlich ist, ja?

[ok] (oder minus unendlich)

> Und die Funktion heißt dann trotzdem
> integrierbar!?

Nein, sie heißt dann quasi-integrierbar.
    

> > Das Lebesgue-Integral existiert dann, sprich wie oben:
>  >  
> > [mm]\int f_+ d\mu + \int f_- d\mu[/mm]
>  Das muss doch "-" heißen,
> oder???

Ja, war ein Tippfehler.

>  Ja, diese zwei Fälle verstehe ich.
>  Aber wenn man jetzt mal von diesen beiden Definitionen
> absieht, was ist dann der Unterschied zwischen
> "integrierbar" und "das Integral existiert"? Kann es
> existieren und unendlich sein, aber dann ist es nicht
> integrierbar, oder wie?

Ja, das ist richtig. Das Integral eine Funktion kann existieren, aber die Funktion trotzdem nicht integrierbar sein (sonderm nur quasi-integrierbar). Dies ist genau dann der Fall, wenn genau eines der beiden Integrale [mm] $\int [/mm] f_+ [mm] d\mu$ [/mm] oder [mm] $\int [/mm] f_- [mm] d\mu$ [/mm] unendlich und das andere endlich ist.

Liebe Grüße
Stefan  


Bezug
                                        
Bezug
Definition: Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:56 Sa 06.11.2004
Autor: Bastiane

Danke, Stefan, jetzt habe ich es verstanden.
Viele Grüße
Christiane
[lichtaufgegangen]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de