www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Definitionen lernen
Definitionen lernen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionen lernen: Umfrage
Status: (Umfrage) Beendete Umfrage Status 
Datum: 15:50 Di 10.02.2009
Autor: AbraxasRishi

Hallo allerseits!

Wir mussten in der Schule in letzter Zeit viele Definitionen auswendig lernen und ich frage ich mich, ob es denn kein logisches Schema gibt, nachdem man Definitionen formulieren kann, ohne sie auswendig zu lernen.Wie macht ihr das?

Ich habe erfahren das dies nur möglich ist wenn man alle Bedingungen der Definiton versteht, was mir nicht immer gelingt z.B:

Def. Grenzwert

Sei [mm] f:D\rightarrow [/mm] R eine Funktion,  D [mm] \subset [/mm] R  ......

Def. lokale Extrema

Sei [mm] f:]a;b[\rightarrow [/mm] R eine Funktion...

Warum steht hier nicht auch ]a;b[ [mm] \subset [/mm] R ?(Wobei die Funktion hier nur im Intervall ]a;b[ festgesetzt ist obwohl dieses aber auch kleiner sein kann als der DB) Auch bei der Def. Beschränktheit von Funktionen steht nur:Sei [mm] f:D\rightarrow [/mm] R ....aber nicht [mm] D\subset [/mm] R. Bei der Definition der Monotonie von Funktionen ist es dann wieder wichtig, dass [mm] D\subset [/mm] R!

Bei Beweisen habe ich ein ähliches Problem. Ich lerne natürlich keinen ganzen Beweis auswendig, aber zumindest die Vorgangsweise.Kann man Beweisen nicht "lernen" und welche Literatur empfielt sich die dazu einen leichten Zugang ermöglicht.Ich kenne zwar schon das Beweisprinzip der vollständigen Induktion und der Rückführung auf Axiome, mir mangeltes aber noch an Praxiserfahrung.

Vielen Dank!

Gruß

Angelika

        
Bezug
Definitionen lernen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 Mi 11.02.2009
Autor: M.Rex

Hallo Angelika

> Hallo allerseits!
>  
> Wir mussten in der Schule in letzter Zeit viele
> Definitionen auswendig lernen und ich frage ich mich, ob es
> denn kein logisches Schema gibt, nachdem man Definitionen
> formulieren kann, ohne sie auswendig zu lernen.Wie macht
> ihr das?
>  
> Ich habe erfahren das dies nur möglich ist wenn man alle
> Bedingungen der Definiton versteht, was mir nicht immer
> gelingt z.B:
>  
> Def. Grenzwert
>  
> Sei [mm]f:D\rightarrow[/mm] R eine Funktion,  D [mm]\subset[/mm] R  ......
>  
> Def. lokale Extrema
>  
> Sei [mm]f:]a;b[\rightarrow[/mm] R eine Funktion...
>  
> Warum steht hier nicht auch ]a;b[ [mm]\subset[/mm] R ?(Wobei die
> Funktion hier nur im Intervall ]a;b[ festgesetzt ist obwohl
> dieses aber auch kleiner sein kann als der DB)

Hier musst du, da du lokale Extrema suchst, ein passendes Intervall finden. Wenn du ganz D hast, hättest du die Randextrema- sofern vorhanden - mit "im Boot"
Beispiel:
[mm] f:\IR\to\IR [/mm]
[mm] x\mapsto x^{3}-x [/mm]
Diese Funktion hat lokale Extrema bei [mm] x=\pm1, [/mm] da aber [mm] \limes_{x\rightarrow\infty}x³-x=\imfty und\limes_{x\rightarrow-\infty}=-\infty [/mm] hast du hier die Randextrema, die du ducht eine Betrachtung auf einem Intervall "herausnimmst".

> Auch bei der
> Def. Beschränktheit von Funktionen steht nur:Sei
> [mm]f:D\rightarrow[/mm] R ....aber nicht [mm]D\subset[/mm] R. Bei der
> Definition der Monotonie von Funktionen ist es dann wieder
> wichtig, dass [mm]D\subset[/mm] R!
>  

Bei der Beschränktheit gibt es an den Def-Bereich keinerlei einschränkungen, bei der Monotonie und dem Grenzwert ist es wichtig, dass auf dem  Def-Bereich eine grösser-Kleiner Relation bekannt ist.

> Bei Beweisen habe ich ein ähliches Problem. Ich lerne
> natürlich keinen ganzen Beweis auswendig, aber zumindest
> die Vorgangsweise.Kann man Beweisen nicht "lernen" und
> welche Literatur empfielt sich die dazu einen leichten
> Zugang ermöglicht.Ich kenne zwar schon das Beweisprinzip
> der vollständigen Induktion und der Rückführung auf Axiome,
> mir mangeltes aber noch an Praxiserfahrung.

Das Beweisen ist tatsächlich Übungssache, da gewöhnt man sich dran.

>  
> Vielen Dank!
>  
> Gruß
>  
> Angelika

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de