www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Definitions- und Wertbereich
Definitions- und Wertbereich < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitions- und Wertbereich: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:28 Sa 08.09.2007
Autor: Becky1

Aufgabe
Bestimmen Sie den Definitionsbereich und den Wertbereich der folgenden Funktion: g(x)= [mm] \bruch{2x+3}{4x-2} [/mm]

Hallo,

ich habe die Aufgabe wie folgt berechnet:

Da der Nenner nicht 0 seien darf ist: D = R / { [mm] \bruch{1}{2} [/mm] }

[mm] y=\bruch{2x+3}{4x-2} [/mm]

[mm] 4x-2x=\bruch{5}{y} [/mm]

[mm] x=\bruch{5}{2y} [/mm]

[mm] f(D)=\IR [/mm] /{ [mm] \bruch{1}{2} [/mm] }

Liege ich da richtig?

Danke!

        
Bezug
Definitions- und Wertbereich: 1. teil okay
Status: (Antwort) fertig Status 
Datum: 17:36 Sa 08.09.2007
Autor: Infinit

Hallo Becky1,
Deine Argumentation für den Definitionsbereich ist in Ordnung, der Wertebereich ist derjenige Bereich, den die y-Werte annehmen können.
Überlege Dir dazu, was in der Nachbarschaft des Punktes, der nicht zum Definitionsbereich gehört, mit den y-Werten  geschieht.
Viele Grüße,
Infinit

Bezug
                
Bezug
Definitions- und Wertbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Sa 08.09.2007
Autor: Becky1

Hallo Infinit,

danke für deine Antwort.

wenn ich das richtig verstanden habe, ist die richtige Lossung:
f(D)= [mm] \IQ [/mm] / { [mm] \bruch{1}{2} [/mm] } ?




Bezug
                        
Bezug
Definitions- und Wertbereich: Nicht so ganz
Status: (Antwort) fertig Status 
Datum: 18:27 Sa 08.09.2007
Autor: Infinit

Hallo Becky1,
verwechsele hier nicht den Definitions- und den Wertebereich. Das Ergebnis liegt sicher im Reellen und der Wert wird betragsmäßig immer größer, je näher Du an die Nullstelle des Nenners kommst, da der Nenner immer kleiner und kleiner wird. Setze doch mal spaßeshalber die beiden x-Werte 0,499 und 0,501 in die Gleichung ein und Du siehst, was passiert.
Viele Grüße,
Infinit

Bezug
        
Bezug
Definitions- und Wertbereich: Wertebereich
Status: (Antwort) fertig Status 
Datum: 19:16 Sa 08.09.2007
Autor: Loddar

Hallo Becky!


Du kannst auch hier die Umkehrfunktion [mm] $f^{-1}(x)$ [/mm] zu der Funktion $f(x) \ = [mm] \bruch{2x+3}{4x-2}$ [/mm] bestimmen und dann deren Definitionsbereich ermitteln.

Denn der Definitionsbereich der Umkehrfunktion entspricht dem Wertebereich der Ausgangsfunktion.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de