www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Delta-Distribution
Delta-Distribution < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Delta-Distribution: Ergebnis bestimmen
Status: (Frage) beantwortet Status 
Datum: 13:21 Di 01.05.2012
Autor: murmel

Aufgabe
Berechnen Sie das Integral:

[mm] \int_{-\infty}^{\infty} \mathrm{d}x\,\exp\left(x\right)^2 \, \delta\left(x - 2\right) [/mm]


Hallo ihr fleißigen Mathematikbienchen,


...blooob, blob.... .

Das ist gerade alles, was mir zu dieser obigen Konstruktion einfällt.
Mathematik ist weder mein Neben- noch Kernfach. Ich brauche es für die Physik.


Könnte mir bitte jemand explizit (für mich: "Delt-Distribution für Dummies") an diesem Beispiel erklären wie ich solch ein Integral zu berechnen habe? In der Vorlesung habe ich absolut gar nichts verstanden.


Ich wäre euch sehr dankbar.

        
Bezug
Delta-Distribution: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Di 01.05.2012
Autor: notinX

Hallo,

> Berechnen Sie das Integral:
>  
> [mm] \int_{-\infty}^{\infty} \mathrm{d}x\,\exp\left(x\right)^2 \, \delta\left(x - 2\right) [/mm]
>  
> Hallo ihr fleißigen Mathematikbienchen,
>  
>
> ...blooob, blob.... .
>  
> Das ist gerade alles, was mir zu dieser obigen Konstruktion
> einfällt.
>  Mathematik ist weder mein Haupt- noch Kernfach. Ich
> brauche es für die Physik.
>  
>
> Könnte mir bitte jemand explizit (für mich:
> "Delt-Distribution für Dummies") an diesem Beispiel
> erklären wie ich solch ein Integral zu berechnen habe? In
> der Vorlesung habe ich absolut gar nichts verstanden.

Wenn Du es nur für die Physik brauchst, solltest Du mi folgender Gleichung auskommen:
[mm] $\int_{-\infty}^{\infty}f(x)\delta(x-x_0)\,\mathrm{d}x=f(x_0)$ [/mm]
Das bedeutet einfach, dass das Integral über den ganzen Definitionsbereich der Funktion f an der Nullstelle des Arguments der Delta-Distribution entspricht.

>  
>
> Ich wäre euch sehr dankbar.

Gruß,

notinX

Bezug
        
Bezug
Delta-Distribution: Frage ist beantwortet!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:33 Di 01.05.2012
Autor: murmel

Habe versehentlich auf "Frage ist noch nicht beantwortet" geklickt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de